Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(44): 16415-16426, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36326280

RESUMO

The size- and shape-dependence of the properties are the most characteristic features of nanoscale matter. In many types of nanomaterials, there is a size regime wherein every atom counts. In order to fully realize the idea of 'maneuvering things atom by atom' envisioned by Richard Feynman, synthesis and separation of nanoscale matter with atomic precision are essential. It is therefore not surprising that analytical separation techniques have contributed tremendously toward understanding the size- as well as shape-dependent properties of nanomaterials. Fascinating properties of nanomaterials would not have been explored without the use of these techniques. Here we discuss the pivotal role of analytical separation techniques in the progress of nanomaterials science. We begin with a brief overview of some of the key analytical separation techniques that are of tremendous importance in nanomaterials research. Then we describe how each of these techniques has contributed to the advancements in nanomaterials science taking some of the nanosystems as examples. We discuss the limitations and challenges of these techniques and future perspectives.

2.
Phys Chem Chem Phys ; 24(22): 13848-13859, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616625

RESUMO

We report distinct molecule-like and lattice (breathing) vibrational signatures of atomically precise, ligand-protected metal clusters using low-temperature Raman spectroscopy. Our measurements provide fingerprint Raman spectra of a series of noble metal clusters, namely, Au25(SR)18, Ag25(SR)18, Ag24Au1(SR)18, Ag29(S2R)12 and Ag44(SR)30 (-SR = alkyl/arylthiolate, -S2R = dithiolate). Distinct, well-defined, low-frequency Raman bands of these clusters result from the vibrations of their metal cores whereas the higher-frequency bands reflect the structure of the metal-ligand interface. We observe a distinct breathing vibrational mode for each of these clusters. Detailed analyses of the bands are presented in the light of DFT calculations. These vibrational signatures change systematically when the metal atoms and/or the ligands are changed. Most importantly, our results show that the physical, lattice dynamics model alone cannot completely describe the vibrational properties of ligand-protected metal clusters. We show that low-frequency Raman spectroscopy is a powerful tool to understand the vibrational dynamics of atomically precise, molecule-like particles of other materials such as molecular nanocarbons, quantum dots, and perovskites.

3.
Small ; 17(39): e2101855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34405952

RESUMO

Distinct Raman spectroscopic signatures of the metal core of atomically precise, ligand-protected noble metal nanoclusters are reported using Au38 (PET)24 and Au38-x Agx (PET)24 (PET = 2-phenylethanethiolate, -SC2 H4 C6 H5 ) as model systems. The fingerprint Raman features (occurring <200 cm-1 ) of these clusters arise due to the vibrations involving metal atoms of their Au23 or Au23-x Agx cores. A distinct core breathing vibrational mode of the Au23 core has been observed at 90 cm-1 . Whereas the breathing mode shifts to higher frequencies with increasing Ag content of the cluster, the vibrational signatures due to the outer metal-ligand staple motifs (between 200 and 500 cm-1 ) do not shift significantly. DFT calculations furthermore reveal weak Raman bands at higher frequencies compared to the breathing mode, which are associated mostly with the rattling of two central gold atoms of the bi-icosahedral Au23 core. These vibrations are also observed in the experimental spectrum. The study indicates that low-frequency Raman spectra are a characteristic fingerprint of atomically precise clusters, just as electronic absorption spectroscopy, in contrast to the spectrum associated with the ligand shell, which is observed at higher frequencies.


Assuntos
Ouro , Análise Espectral Raman , Ligantes , Tomografia por Emissão de Pósitrons , Vibração
4.
Nanoscale ; 11(38): 17931-17938, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31553339

RESUMO

We investigate the discrete diffraction phenomenon in a Polymer-Liquid Crystal-Polymer Slices (POLICRYPS) overlaying a random distribution of gold nanoparticles (AuNPs, plasmonic elements). We study the propagation of a CW green laser beam through the waveguide structure as a function of beam polarization, laser intensity and sample temperature. It turns out that the plasmonic field created at the interface between AuNPs and POLICRYPS waveguides enables and stabilizes the optical field propagation within the responsive nematic liquid crystal channels. The active role of the liquid crystal is pointed out by a polarization, temperature and beam divergence experimental analysis and evidenced by a peculiar trumpet-shaped discrete diffraction pattern. Theoretical simulations confirm that the observed optical behavior is governed by the interaction of the nematic liquid crystal with optical and plasmonic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA