Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(3): e14357, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38775128

RESUMO

The application of protein hydrolysates (PH) biostimulants is considered a promising approach to promote crop growth and resilience against abiotic stresses. Nevertheless, PHs bioactivity depends on both the raw material used for their preparation and the molecular fraction applied. The present research aimed at investigating the molecular mechanisms triggered by applying a PH and its fractions on plants subjected to nitrogen limitations. To this objective, an integrated transcriptomic-metabolomic approach was used to assess lettuce plants grown under different nitrogen levels and treated with either the commercial PH Vegamin® or its molecular fractions PH1(>10 kDa), PH2 (1-10 kDa) and PH3 (<1 kDa). Regardless of nitrogen provision, biostimulant application enhanced lettuce biomass, likely through a hormone-like activity. This was confirmed by the modulation of genes involved in auxin and cytokinin synthesis, mirrored by an increase in the metabolic levels of these hormones. Consistently, PH and PH3 upregulated genes involved in cell wall growth and plasticity. Furthermore, the accumulation of specific metabolites suggested the activation of a multifaceted antioxidant machinery. Notwithstanding, the modulation of stress-response transcription factors and genes involved in detoxification processes was observed. The coordinated action of these molecular entities might underpin the increased resilience of lettuce plants against nitrogen-limiting conditions. In conclusion, integrating omics techniques allowed the elucidation of mechanistic aspects underlying PH bioactivity in crops. Most importantly, the comparison of PH with its fraction PH3 showed that, except for a few peculiarities, the effects induced were equivalent, suggesting that the highest bioactivity was ascribable to the lightest molecular fraction.


Assuntos
Lactuca , Nitrogênio , Hidrolisados de Proteína , Lactuca/metabolismo , Lactuca/genética , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Nitrogênio/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metabolômica , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Multiômica
2.
Sci Rep ; 14(1): 10710, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729985

RESUMO

Plant biostimulants are widely applied in agriculture for their ability to improve plant fitness. In the present work, the impact of Graminaceae-derived protein hydrolysate (P) and its lighter molecular fraction F3 (< 1 kDa) on lettuce plants, subjected to either no salt or high salt conditions, was investigated through the combination of metabolomics and transcriptomics. The results showed that both treatments significantly modulated the transcriptome and metabolome of plants under salinity stress, highlighting an induction of the hormonal response. Nevertheless, P and F3 also displayed several peculiarities. F3 specifically modulated the response to ethylene and MAPK signaling pathway, whereas P treatment induced a down-accumulation of secondary metabolites, albeit genes controlling the biosynthesis of osmoprotectants and antioxidants were up-regulated. Moreover, according with the auxin response modulation, P promoted cell wall biogenesis and plasticity in salt-stressed plants. Notably, our data also outlined an epigenetic control of gene expression induced by P treatment. Contrarily, experimental data are just partially in agreement when not stressed plants, treated with P or F3, were considered. Indeed, the reduced accumulation of secondary metabolites and the analyses of hormone pathways modulation would suggest a preferential allocation of resources towards growth, that is not coherent with the down-regulation of the photosynthetic machinery, the CO2 assimilation rate and leaves biomass. In conclusion, our data demonstrate that, although they might activate different mechanisms, both the P and F3 can result in similar benefits, as far as the accumulation of protective osmolytes and the enhanced tolerance to oxidative stress are concerned. Notably, the F3 fraction exhibits slightly greater growth promotion effects under high salt conditions. Most importantly, this research further corroborates that biostimulants' mode of action is dependent on plants' physiological status and their composition, underscoring the importance of investigating the bioactivity of the different molecular components to design tailored applications for the agricultural practice.


Assuntos
Regulação da Expressão Gênica de Plantas , Lactuca , Metabolômica , Lactuca/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Lactuca/genética , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Salino , Transcriptoma , Metaboloma/efeitos dos fármacos , Perfilação da Expressão Gênica , Multiômica
3.
Plant Physiol Biochem ; 207: 108354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219425

RESUMO

Starch bioengineering in cereals has produced a plethora of genotypes with new nutritional and technological functionalities. Modulation of amylose content from 0 to 100% was inversely correlated with starch digestibility and promoted a lower glycemic index in food products. In wheat, starch mutants have been reported to exhibit various side effects, mainly related to the seed phenotype. However, little is known about the impact of altered amylose content and starch structure on plant metabolism. Here, three bread wheat starch mutant lines with extreme phenotypes in starch branching and amylose content were used to study plant responses to starch structural changes. Omics profiling of gene expression and metabolic patterns supported changes, confirmed by ultrastructural analysis in the chloroplast of the immature seeds. In detail, the identification of differentially expressed genes belonging to functional categories related to photosynthesis, chloroplast and thylakoid (e.g. CURT1), the alteration in the accumulation of photosynthesis-related compounds, and the chloroplast alterations (aberrant shape, grana stacking alteration, and increased number of plastoglobules) suggested that the modification of starch structure greatly affects starch turnover in the chloroplast, triggering oxidative stress (ROS accumulation) and premature tissue senescence. In conclusion, this study highlighted a correlation between starch structure and chloroplast functionality in the wheat kernel.


Assuntos
Amilose , Triticum , Amilose/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Mutação/genética , Cloroplastos/genética , Cloroplastos/metabolismo
4.
Front Vet Sci ; 10: 1201484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303726

RESUMO

Two boxer dogs from the same litter were presented at 3 months of age for urinary and fecal incontinence. Both dogs had an abnormal tail consisting of a small stump, an atonic anal sphincter, and absent perineal reflex and sensation. Neurological evaluation was indicative of a lesion of the cauda equina or sacral spinal cord. Radiology and CT scan of the spine displayed similar findings in the two dogs that were indicative of sacral agenesis. Indeed, they had 6 lumbar vertebrae followed by a lumbosacral transitional vertebra, lacking a complete spinous process, and a hypoplastic vertebra carrying 2 hypoplastic sacral transverse processes as the only remnant of the sacral bone. Caudal vertebrae were absent in one of the dogs. On MRI, one dog had a dural sac occupying the entire spinal canal and ending in a subfascial fat structure. In the other dog, the dural sac finished in an extracanalar, subfascial, well-defined cystic structure, communicating with the subarachnoid space, and consistent with a meningocele. Sacral agenesis-that is the partial or complete absence of the sacral bones-is a neural tube defect occasionally reported in humans with spina bifida occulta. Sacral agenesis has been described in human and veterinary medicine in association with conditions such as caudal regression syndrome, perosomus elumbis, and Currarino syndrome. These neural tube defects are caused by genetic and/or environmental factors. Despite thorough genetic investigation, no candidate variants in genes with known functional impact on bone development or sacral development could be found in the affected dogs. To the best of the authors' knowledge, this is the first report describing similar sacral agenesis in two related boxer dogs.

5.
Acta Vet Hung ; 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36037045

RESUMO

The present case report describes the clinical signs of a 10-month-old, intact female, Domestic Shorthair cat presented with a history of chronic progressive difficulty to walk with the four limbs. The physical and neurological examinations revealed skeletal deformities, corneal opacity and a severe spastic non-ambulatory tetraparesis. Complete blood count and biochemistry profiles were unremarkable. Diffuse bone rarefaction, hyperostosis and an apparent fusion of the vertebral bodies were observed on spinal radiographs. A non-contrast computed tomography (CT) exam of the whole body of the patient was performed. Based on the medical history, clinical findings, laboratory analysis, spinal radiographs and CT findings, a lysosomal storage disorder was suspected. Genetic testing for mucopolysaccharidosis VI and VII revealed a genetic mutation, ARSB variant L476P, confirming the diagnosis of mucopolysaccharidosis type VI.

6.
Plant Sci ; 322: 111346, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35697150

RESUMO

Polyamines (PAs) are key signaling molecules involved in plant growth and stress acclimation processes. This work investigated the effect of spermidine, spermine, and putrescine (alone and in a mixture) in tomato plants using a combined metabolomics and lipidomics approach. The experiments were carried out under non-stress and 100 mM NaCl salinity conditions. Shoot and root biomass, as well as SPAD values, were increased by the application of exogenous PAs but with differences across treatments. Similarly, root length density (F: 34, p < 0.001), average root diameter (F: 14, p < 0.001), and very fine roots (0.0-0.5 mm) increased in PA-treated plants, compared to control. Metabolomics and lipidomics indicated that, despite being salinity the hierarchically prevalent factor, the different PA treatments imposed distinct remodeling at the molecular level. Plants treated with putrescine showed the broader modulation of metabolite profile, whereas spermidine and spermine induced a comparatively milder effect. The pathway analysis from differential metabolites indicated a broad and multi-level intricate modulation of several signaling molecules together with stress-related compounds like flavonoids and alkaloids. Concerning signaling processes, the complex crosstalk between phytohormones (mainly abscisic acid, cytokinins, the ethylene precursor, and jasmonates), and the membrane lipids signaling cascade (in particular, sphingolipids as well as ceramides and other glycerophospholipids), was involved in such complex response of tomato to PAs. Interestingly, PA-specific processes could be observed, with peculiar responses under either control or salinity conditions.


Assuntos
Salinidade , Solanum lycopersicum , Lipidômica , Solanum lycopersicum/metabolismo , Raízes de Plantas/metabolismo , Poliaminas/metabolismo , Putrescina/farmacologia , Espermidina/metabolismo , Espermina/metabolismo
7.
Plants (Basel) ; 10(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567668

RESUMO

Despite the scientific evidence supporting their biostimulant activity, the molecular mechanism(s) underlying the activity of protein hydrolysates (PHs) and the specificity among different products are still poorly explored. This work tested five different protein hydrolysates, produced from different plant sources using the same enzymatic approach, for their ability to promote rooting in tomato cuttings following quick dipping. Provided that all the different PHs increased root length (45-93%) and some of them increased root number (37-56%), untargeted metabolomics followed by multivariate statistics and pathway analysis were used to unravel the molecular processes at the basis of the biostimulant activity. Distinct metabolomic signatures could be found in roots following the PHs treatments. In general, PHs shaped the phytohormone profile, modulating the complex interaction between cytokinins and auxins, an interplay playing a pivotal role in root development, and triggered a down accumulation of brassinosteroids. Concerning secondary metabolism, PHs induced the accumulation of aliphatic glucosinolates, alkaloids, and phenylpropanoids, potentially eliciting crop resilience to stress conditions. Here, we confirm that PHs may have a hormone-like activity, and that their application can modulate plant growth, likely interfering with signaling processes. Noteworthy, the heterogenicity of the botanical origin supported the distinctive and peculiar metabolomic responses we observed across the products tested. While supporting their biostimulant activity, these findings suggest that a generalized crop response to PHs cannot be defined and that specific effects are rather to be investigated.

8.
Front Plant Sci ; 12: 808711, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185959

RESUMO

Plant phenomics is becoming a common tool employed to characterize the mode of action of biostimulants. A combination of this technique with other omics such as metabolomics can offer a deeper understanding of a biostimulant effect in planta. However, the most challenging part then is the data analysis and the interpretation of the omics datasets. In this work, we present an example of how different tools, based on multivariate statistical analysis, can help to simplify the omics data and extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate (PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown in controlled conditions and under salinity. The biostimulants induced different phenotypic and metabolomic responses in both crops. In general, they improved growth and photosynthesis performance under control and salt stress conditions, with better performance in lettuce. To identify the most significant traits for each treatment, a random forest classifier was used. Using this approach, we found out that, in lettuce, biomass-related parameters were the most relevant traits to evaluate the biostimulant mode of action, with a better response mainly connected to plant hormone regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence parameters in combination with certain antistress metabolites that benefit the electron transport chain, such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets obtained from the -omics to extract the relevant information.

9.
Front Plant Sci ; 11: 596000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224175

RESUMO

Sweet basil (Ocimum basilicum L.) is one of the most produced aromatic herbs in the world, exploiting hydroponic systems. It has been widely assessed that macronutrients, like nitrogen (N) and sulfur (S), can strongly affect the organoleptic qualities of agricultural products, thus influencing their nutraceutical value. In addition, plant-growth-promoting rhizobacteria (PGPR) have been shown to affect plant growth and quality. Azospirillum brasilense is a PGPR able to colonize the root system of different crops, promoting their growth and development and influencing the acquisition of mineral nutrients. On the bases of these observations, we aimed at investigating the impact of both mineral nutrients supply and rhizobacteria inoculation on the nutraceutical value on two different sweet basil varieties, i.e., Genovese and Red Rubin. To these objectives, basil plants have been grown in hydroponics, with nutrient solutions fortified for the concentration of either S or N, supplied as SO4 2- or NO3 -, respectively. In addition, plants were either non-inoculated or inoculated with A. brasilense. At harvest, basil plants were assessed for the yield and the nutraceutical properties of the edible parts. The cultivation of basil plants in the fortified nutrient solutions showed a general increasing trend in the accumulation of the fresh biomass, albeit the inoculation with A. brasilense did not further promote the growth. The metabolomic analyses disclosed a strong effect of treatments on the differential accumulation of metabolites in basil leaves, producing the modulation of more than 400 compounds belonging to the secondary metabolism, as phenylpropanoids, isoprenoids, alkaloids, several flavonoids, and terpenoids. The primary metabolism that resulted was also influenced by the treatments showing changes in the fatty acid, carbohydrates, and amino acids metabolism. The amino acid analysis revealed that the treatments induced an increase in arginine (Arg) content in the leaves, which has been shown to have beneficial effects on human health. In conclusion, between the two cultivars studied, Red Rubin displayed the most positive effect in terms of nutritional value, which was further enhanced following A. brasilense inoculation.

10.
Front Plant Sci ; 11: 891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719694

RESUMO

Global climate change, its implications for agriculture, and the complex scenario presented by the scientific community are of worldwide concern. Drought is a major abiotic stress that can restrict plants growth and yields, thus the identification of genotypes with higher adaptability to drought stress represents one of the primary goals in breeding programs. During abiotic stress, metabolic adaptation is crucial for stress tolerance, and accumulation of specific amino acids and/or as secondary metabolites deriving from amino acid metabolism may correlate with the increased tolerance to adverse environmental conditions. This work, focused on the metabolism of branched chain-amino acids (BCAAs) in durum wheat and the role of branched-chain amino acid aminotransferases (BCATs) in stress response. The role of BCATs in plant response to drought was previously proposed for Arabidopsis, where the levels of BCAAs were altered at the transcriptional level under drought conditions, triggering the onset of defense response metabolism. However, in wheat the role of BCAAs as a trigger of the onset of the drought defense response has not been elucidated. A comparative genomic approach elucidated the composition of the BCAT gene family in durum wheat. Here we demonstrate a tissue and developmental stage specificity of BCATs regulation in the drought response. Moreover, a metabolites profiling was performed on two contrasting durum wheat cultivars Colosseo and Cappelli resulting in the detection of a specific pattern of metabolites accumulated among genotypes and, in particular, in an enhanced BCAAs accumulation in the tolerant cv Cappelli further supporting a role of BCAAs in the drought defense response. The results support the use of gene expression and target metabolomic in modern breeding to shape new cultivars more resilient to a changing climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA