Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491573

RESUMO

In this work, we introduce a generalization of the Landauer bound for erasure processes that stems from absolutely irreversible dynamics. Assuming that the erasure process is carried out in an absolutely irreversible way so that the probability of observing some trajectories is zero in the forward process but finite in the reverse process, we derive a generalized form of the bound for the average erasure work, which is valid also for imperfect erasure and asymmetric bits. The generalized bound obtained is tighter than or, at worst, as tight as existing ones. Our theoretical predictions are supported by numerical experiments and the comparison with data from previous works.

2.
Phys Rev Lett ; 129(15): 150602, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36269957

RESUMO

The third law of thermodynamics, also known as the Nernst unattainability principle, puts a fundamental bound on how close a system, whether classical or quantum, can be cooled to a temperature near to absolute zero. On the other hand, a fundamental assumption of quantum computing is to start each computation from a register of qubits initialized in a pure state, i.e., at zero temperature. These conflicting aspects, at the interface between quantum computing and thermodynamics, are often overlooked or, at best, addressed only at a single-qubit level. In this Letter, we argue how the existence of a small but finite effective temperature, which makes the initial state a mixed state, poses a real challenge to the fidelity constraints required for the scaling of quantum computers. Our theoretical results, carried out for a generic quantum circuit with N-qubit input states, are validated by test runs performed on a real quantum processor.

3.
Sci Rep ; 12(1): 11201, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778586

RESUMO

Training of neural networks can be reformulated in spectral space, by allowing eigenvalues and eigenvectors of the network to act as target of the optimization instead of the individual weights. Working in this setting, we show that the eigenvalues can be used to rank the nodes' importance within the ensemble. Indeed, we will prove that sorting the nodes based on their associated eigenvalues, enables effective pre- and post-processing pruning strategies to yield massively compacted networks (in terms of the number of composing neurons) with virtually unchanged performance. The proposed methods are tested for different architectures, with just a single or multiple hidden layers, and against distinct classification tasks of general interest.


Assuntos
Redes Neurais de Computação
4.
Science ; 376(6592): eabi8175, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35482859

RESUMO

Establishing causal relationships between genetic alterations of human cancers and specific phenotypes of malignancy remains a challenge. We sequentially introduced mutations into healthy human melanocytes in up to five genes spanning six commonly disrupted melanoma pathways, forming nine genetically distinct cellular models of melanoma. We connected mutant melanocyte genotypes to malignant cell expression programs in vitro and in vivo, replicative immortality, malignancy, rapid tumor growth, pigmentation, metastasis, and histopathology. Mutations in malignant cells also affected tumor microenvironment composition and cell states. Our melanoma models shared genotype-associated expression programs with patient melanomas, and a deep learning model showed that these models partially recapitulated genotype-associated histopathological features as well. Thus, a progressive series of genome-edited human cancer models can causally connect genotypes carrying multiple mutations to phenotype.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanócitos/metabolismo , Melanoma/patologia , Mutação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genética
5.
Phys Rev E ; 104(5-1): 054312, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942751

RESUMO

Deep neural networks can be trained in reciprocal space by acting on the eigenvalues and eigenvectors of suitable transfer operators in direct space. Adjusting the eigenvalues while freezing the eigenvectors yields a substantial compression of the parameter space. This latter scales by definition with the number of computing neurons. The classification scores as measured by the displayed accuracy are, however, inferior to those attained when the learning is carried in direct space for an identical architecture and by employing the full set of trainable parameters (with a quadratic dependence on the size of neighbor layers). In this paper, we propose a variant of the spectral learning method as in Giambagli et al. [Nat. Commun. 12, 1330 (2021)2041-172310.1038/s41467-021-21481-0], which leverages on two sets of eigenvalues for each mapping between adjacent layers. The eigenvalues act as veritable knobs which can be freely tuned so as to (1) enhance, or alternatively silence, the contribution of the input nodes and (2) modulate the excitability of the receiving nodes with a mechanism which we interpret as the artificial analog of the homeostatic plasticity. The number of trainable parameters is still a linear function of the network size, but the performance of the trained device gets much closer to those obtained via conventional algorithms, these latter requiring, however, a considerably heavier computational cost. The residual gap between conventional and spectral trainings can be eventually filled by employing a suitable decomposition for the nontrivial block of the eigenvectors matrix. Each spectral parameter reflects back on the whole set of internode weights, an attribute which we effectively exploit to yield sparse networks with stunning classification abilities as compared to their homologs trained with conventional means.

6.
Nat Methods ; 18(11): 1352-1362, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34711971

RESUMO

Charting an organs' biological atlas requires us to spatially resolve the entire single-cell transcriptome, and to relate such cellular features to the anatomical scale. Single-cell and single-nucleus RNA-seq (sc/snRNA-seq) can profile cells comprehensively, but lose spatial information. Spatial transcriptomics allows for spatial measurements, but at lower resolution and with limited sensitivity. Targeted in situ technologies solve both issues, but are limited in gene throughput. To overcome these limitations we present Tangram, a method that aligns sc/snRNA-seq data to various forms of spatial data collected from the same region, including MERFISH, STARmap, smFISH, Spatial Transcriptomics (Visium) and histological images. Tangram can map any type of sc/snRNA-seq data, including multimodal data such as those from SHARE-seq, which we used to reveal spatial patterns of chromatin accessibility. We demonstrate Tangram on healthy mouse brain tissue, by reconstructing a genome-wide anatomically integrated spatial map at single-cell resolution of the visual and somatomotor areas.


Assuntos
Encéfalo/metabolismo , Cromatina/genética , Aprendizado Profundo , Regulação da Expressão Gênica , Análise de Célula Única/métodos , Software , Transcriptoma , Animais , Cromatina/química , Cromatina/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Sequências Reguladoras de Ácido Nucleico
7.
Phys Rev E ; 104(2): L022102, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525519

RESUMO

For a system described by a multivariate probability density function obeying the fluctuation theorem, the average dissipation is lower bounded by the degree of asymmetry of the marginal distributions (namely the relative entropy between the marginal and its mirror image). We formally prove that such a lower bound is tighter than the recently reported bound expressed in terms of the precision of the marginal (i.e., the thermodynamic uncertainty relation) and is saturable. We illustrate the result with examples and we apply it to achieve one of the most accurate experimental estimations of dissipation associated with quantum annealing to date.

8.
Nat Commun ; 12(1): 1330, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637729

RESUMO

Deep neural networks are usually trained in the space of the nodes, by adjusting the weights of existing links via suitable optimization protocols. We here propose a radically new approach which anchors the learning process to reciprocal space. Specifically, the training acts on the spectral domain and seeks to modify the eigenvalues and eigenvectors of transfer operators in direct space. The proposed method is ductile and can be tailored to return either linear or non-linear classifiers. Adjusting the eigenvalues, when freezing the eigenvectors entries, yields performances that are superior to those attained with standard methods restricted to operate with an identical number of free parameters. To recover a feed-forward architecture in direct space, we have postulated a nested indentation of the eigenvectors. Different non-orthogonal basis could be employed to export the spectral learning to other frameworks, as e.g. reservoir computing.

9.
Phys Rev Lett ; 122(7): 070603, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30848614

RESUMO

Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine. We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures. We show that feedback control is not necessary for operation while entanglement must be present in the measurement projectors. We quantify the probability that QMC occurs when the measurement basis is chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat engine operation), while remaining always smaller than the most useless operation, namely, dumping heat in both baths. These results show that QMC can be very robust to experimental noise. A possible low-temperature solid-state implementation that integrates circuit QED technology with circuit quantum thermodynamics technology is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA