Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 19(1): 113-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945792

RESUMO

The study of how mechanical forces affect biological events in living tissue is important for the understanding of a multitude of physiogical and pathophysiological phenomena. However, these investigations are often impeded by insufficient knowledge about force parameters, inadequate experimental administration of force stimuli and lack of noninvasive means to record their molecular and cellular effects. We therefore introduced a procedure to study the impact of force stimulation on adhesion G-protein-coupled receptor dissociation in mechanosensory neurons. Here, we detail a procedure to harness the mechanical force spectrum that emerges during the natural flexion-extension cycle of the femorotibial joint of adult fruit flies (Drosophila melanogaster). Mechanical load generated during the joint's motion is transmitted to specialized mechanosensory neurons residing close to the joint axis, which serve as proprioceptive sensors in the peripheral nervous system of the animal. Temporary immobilization of the joint by a restraint made of a human hair allows for the observation of transgenic mechanosensitive reporters by using fluorescent readout in the neurons before, during and after cessation of mechanical stimulation. The assay harnesses physiologically adequate stimuli for joint flexion and extension, can be conducted noninvasively in live specimens and is compatible with various transgenic reporter systems beyond the initially conceived strategy and mechanobiological hypotheses tested. The application of the protocol requires knowledge in Drosophila genetics, husbandry and fluorescence imaging and micromanipulation skills. The experimental procedure can be completed in 10 h and requires an additional 30 min in advance for fly fixation and leg immobilization. The apple agar cooking and heptane glue preparation requires a maximum of 30 min on the day before the experiment is conducted.


Assuntos
Drosophila melanogaster , Perna (Membro) , Animais , Humanos , Drosophila melanogaster/fisiologia , Neurônios , Animais Geneticamente Modificados , Drosophila
2.
Nature ; 615(7954): 945-953, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890234

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.


Assuntos
Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Ligantes , Proteólise , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA