Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400550, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772010

RESUMO

Non-aqueous organic redox flow batteries (RFB) utilizing verdazyl radicals are increasingly explored as energy storage technology. Verdazyl cations in RFBs with acidic aqueous electrolytes, however, have not been investigated yet. To advance the application in aqueous RFBs it is crucial to examine the interaction with the utilized membranes. Herein, the interactions between the 1,3,5-triphenylverdazyl cation and commercial Nafion 211 and self-casted polybenzimidazole (PBI) membranes are systematically investigated to improve the performance in RFBs. The impact of polymer backbones is studied by using mPBI and OPBI as well as different pre-treatments with KOH and H3PO4. Nafion 211 shows substantial absorption of the 1,3,5-triphenylverdazylium cation resulting in loss of conductivity. In contrast, mPBI and OPBI are chemically stable against the verdazylium cation without noticeable absorption. Pre-treatment with KOH leads to a significant increase in ionic conductivity as well as low absorption and permeation of the verdazylium cation. Symmetrical RFB cell tests on lab-scale highlight the beneficial impact of PBI membranes in terms of capacity retention and I-V curves over Nafion 211. With only 2 % d-1 capacity fading 1,3,5-triphenylverdazyl cations in acidic electrolytes with low-cost PBI based membranes exhibit a higher cycling stability compared to state-of-the-art batteries using verdazyl derivatives in non-aqueous electrolytes.

2.
Small ; : e2401592, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805745

RESUMO

In anion exchange membrane (AEM) water electrolyzers, AEMs separate hydrogen and oxygen, but should efficiently transport hydroxide ions. In the electrodes, catalyst nanoparticles are mechanically bonded to the porous transport layer or membrane by a polymeric binder. Since these binders form a thin layer on the catalyst particles, they should not only transport hydroxide ions and water to the catalyst particles, but should also transport the nascating gases away. In the worst case, if formation of gases is >> than gas transport, a gas pocket between catalyst surface and the binder may form and hinder access to reactants (hydroxide ions, water). In this work, the ion conductive binder SEBS-DABCO is blended with PIM-1, a highly permeable polymer of intrinsic microporosity. With increasing amount of PIM-1 in the blends, the permeability for water (selected to represent small molecules) increases. Simultaneously, swelling and conductivity decrease, due to the increased hydrophobicity. Ex situ data and electrochemical data indicate that blends with 50% PIM-1 have better properties than blends with 25% or 75% PIM-1, and tests in the electrolyzer confirm an improved performance when the SEBS-DABCO binder contains 50% PIM-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA