Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 13782-13796, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559933

RESUMO

Tuberculosis (TB)-causing bacterium Mycobacterium tuberculosis (Mtb) utilizes mycolic acids for building the mycobacterial cell wall, which is critical in providing defense against external factors and resisting antibiotic action. MmpL3 is a secondary resistance nodulation division transporter that facilitates the coupled transport of mycolic acid precursor into the periplasm using the proton motive force, thus making it an attractive drug target for TB infection. In 2019, X-ray crystal structures of MmpL3 from M. smegmatis were solved with a promising inhibitor SQ109, which showed promise against drug-resistant TB in Phase II clinical trials. Still, there is a pressing need to discover more effective MmpL3 inhibitors to counteract rising antibiotic resistance. In this study, structure-based high-throughput virtual screening combined with molecular dynamics (MD) simulations identified potential novel MmpL3 inhibitors. Approximately 17 million compounds from the ZINC15 database were screened against the SQ109 binding site on the MmpL3 protein using drug property filters and glide XP docking scores. From this, the top nine compounds and the MmpL3-SQ109 crystal complex structure each underwent 2 × 200 ns MD simulations to probe the inhibitor binding energetics to MmpL3. Four of the nine compounds exhibited stable binding properties and favorable drug properties, suggesting these four compounds could be potential novel inhibitors of MmpL3 for M. tuberculosis.

2.
Life Sci ; 338: 122395, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181853

RESUMO

Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 µM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 µM comparable to that of TA (2-20 µM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias de Mama Triplo Negativas , Humanos , Sobrevivência Celular , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Zinco
3.
J Mol Graph Model ; 123: 108503, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209440

RESUMO

The single-point mutation D26E in human ß-tubulin is associated with drug resistance seen with two anti-mitotic taxanes (paclitaxel and docetaxel) when used to treat cancers. The molecular mechanism of this resistance remains elusive. However, docetaxel and a third-generation taxane, cabazitaxel, are thought to overcome this resistance. Here, structural models of both the wildtype (WT) and D26E mutant (MT) human ß-tubulin were constructed based on the crystal structure of pig ß-tubulin in complex with docetaxel (PDB ID: 1TUB). The three taxanes were docked into the WT and MT ß-tubulin, and the resulting complexes were submitted to three independent runs of 200 ns molecular dynamic simulations, which were then averaged. MM/GBSA calculations revealed the binding energy of paclitaxel with WT and MT ß-Tubulin to be -101.5 ± 8.4 and -90.4 ± 8.9 kcal/mol, respectively. The binding energy of docetaxel was estimated to be -104.7 ± 7.0 kcal/mol with the WT and -103.8 ± 5.5 kcal/mol with the MT ß-tubulin. Interestingly, cabazitaxel was found to have a binding energy of -122.8 ± 10.8 kcal/mol against the WT and -106.2 ± 7.0 kcal/mol against the MT ß-tubulin. These results show that paclitaxel and docetaxel bound to the MT less strongly than the WT, suggesting possible drug resistance. Similarly, cabazitaxel displayed a greater binding propensity against WT and MT ß-tubulin than the other two taxanes. Furthermore, the dynamic cross-correlation matrices (DCCM) analysis suggests that the single-point mutation D26E induces a subtle dynamical difference in the ligand-binding domain. Overall, the present study revealed how the single-point mutation D26E may reduce the binding affinity of the taxanes, however, the effect of the mutation does not significantly affect the binding of cabazitaxel.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Tubulina (Proteína) , Humanos , Animais , Suínos , Tubulina (Proteína)/química , Docetaxel/farmacologia , Taxoides/farmacologia , Taxoides/química , Paclitaxel/farmacologia , Paclitaxel/química
4.
Life Sci ; 309: 121014, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179814

RESUMO

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor type 5 (mGluR5) potentiate positive receptor response and may be effective for the treatment of schizophrenia and cognitive disorders. Although crystal structures of mGluR5 complexed with the negative allosteric modulators (NAMs) are available, no crystal structure of mGluR5 complexed with PAM has been reported to date. Thus, conformational changes associated with the binding of PAMs to mGluR5 remain elusive. Here, a PAM CDPPB, and two NAMs MTEP and MFZ10-7 used as a negative control, were docked to the crystal structure. The docked complexes were submitted to molecular dynamics simulations to examine the activation of the PAM system. An MM/GBSA binding energy calculation was performed to estimate binding strength. Furthermore, molecular switch analysis was done to get insights into conformational changes of the receptor. The PAM CDPPB displays a stronger binding affinity for mGluR5 and induces conformational changes. Also, a salt bridge between TM3 and TM7, corresponding to the ionic lock switch in class A GPCRs is found to be broken. The PAM-induced receptor conformation is more like the agonist-induced conformation than the antagonist-induced conformation, suggesting that PAM works by inducing conformation change and stabilizing the active receptor conformation.


Assuntos
Benzamidas , Simulação de Dinâmica Molecular , Regulação Alostérica , Benzamidas/farmacologia , Pirazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA