Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667687

RESUMO

Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box-Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system.

2.
Heliyon ; 10(1): e23221, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163135

RESUMO

Silymarin (SL) is a water-insoluble flavonoid used in the treatment of different diseases, but its therapeutic activity is limited due to its low solubility. So, in the present study, SL solid dispersions (SDs) were developed using different carriers like Kollidone VA64 (KL), Soluplus (SP), and Poloxamer 188 (PL) by solvent evaporation (SE), microwave irradiation (MI), and freeze-drying (FD) methods. The phase solubility and saturation solubility studies were assessed to estimate the stability constant as well as the carrier effect. The dissolution studies were performed for prepared SL-SDs (binary and ternary) to select the optimum SL-SDs. The selected SL-SDs (F5, F9) were further characterized for infrared spectroscopy (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter (DSC), scanning electron microscope (SEM), and X-ray diffraction (XRD). Finally, the comparative cell viability assay (lung cancer cell line) was performed to evaluate the change in activity after the formulation of SDs. The phase solubility and solubility study results displayed marked enhancements in solubility. The dissolution study findings showed significant enhancement in drug release from ternary solid dispersions (F7-F9) > ternary physical mixture (PM3) > binary solid dispersions (F1-F6) > binary physical mixture (PM1, PM2) in comparison to free SL. A greater release was observed from ternary SDs due to the addition of PL in the formulation, which had a synergistic effect on increasing the solubility. IR and NMR spectra revealed no chemical interaction between SL, KL, and PL. DSC, XRD, and SEM all confirmed the transformation of crystalline SL into amorphous SL. The cell viability assay demonstrated significantly enhanced results from ternary solid dispersion (F9) compared to free SL. Based on the study results, it can be said that SL-SDs are an alternative way to deliver drugs orally that can improve solubility and have anti-cancer activity.

3.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005182

RESUMO

A phytochemical investigation of the stems of the Arabian plant Artemisia sieberi afforded three new isochlorogenic acid derivatives, namely isochlorogenic acid A-3'-O-ß-glucopyranoside (1), isochlorogenic acid A-3'-O-ß-glucopyranoside methyl ester (2), and isochlorogenic acid C-3'-O-ß-glucopyranoside (3), obtained along with thirteen known secondary metabolites belonging to distinct structural classes. The structures of the new metabolites were elucidated by modern spectroscopic techniues based on high-resolution mass spectrometry (HR-ESIMS) and 1D/2D nuclear magnetic resonance (NMR). All isolated compounds were tested for their potential antimicrobial activity against four different bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), in addition to a fungal strain (Candida tropicalis), The results were expressed as the diameter of the clear zone (in millimetres) around each well. Compounds 1 and 3 (isochlorogenic acid A-3'-O-ß-glucopyranoside and isochlorogenic acid C-3'-O-ß-glucopyranoside, respectively) displayed remarkable antifungal effect and potent antibacterial activities against B. subtilis and S. aureus, respectively. 3α,4α-10ß-trihydroxy-8α-acetyloxyguaian-12,6α-olide (6) and angelicoidenol 2-O-ß-d-glucopyranoside (9) emerged as interesting dual antibacterial (selective on P. aeruginosa)/antifungal agents.


Assuntos
Artemisia , Plantas Medicinais , Plantas Medicinais/química , Glucosídeos/farmacologia , Glucosídeos/química , Staphylococcus aureus , Extratos Vegetais/química , Antibacterianos/química , Antifúngicos/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana
4.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897717

RESUMO

Chlamydia psittaci is an intracellular pathogen and causes variety of deadly infections in humans. Antibiotics are effective against C. psittaci however high percentage of resistant strains have been reported in recent times. As there is no licensed vaccine, we used in-silico techniques to design a multi-epitopes vaccine against C. psittaci. Following a step-wise protocol, the proteome of available 26 strains was retrieved and filtered for subcellular localized proteins. Five proteins were selected (2 extracellular and 3 outer membrane) and were further analyzed for B-cell and T-cell epitopes prediction. Epitopes were further checked for antigenicity, solubility, stability, toxigenicity, allergenicity, and adhesive properties. Filtered epitopes were linked via linkers and the 3D structure of the designed vaccine construct was predicted. Binding of the designed vaccine with immune receptors: MHC-I, MHC-II, and TLR-4 was analyzed, which resulted in docking energy scores of -4.37 kcal/mol, -0.20 kcal/mol and -22.38 kcal/mol, respectively. Further, the docked complexes showed stable dynamics with a maximum value of vaccine-MHC-I complex (7.8 Å), vaccine-MHC-II complex (6.2 Å) and vaccine-TLR4 complex (5.2 Å). As per the results, the designed vaccine construct reported robust immune responses to protect the host against C. psittaci infections. In the study, the C. psittaci proteomes were considered in pan-genome analysis to extract core proteins. The pan-genome analysis was conducted using bacterial pan-genome analysis (BPGA) software. The core proteins were checked further for non-redundant proteins using a CD-Hit server. Surface localized proteins were investigated using PSORTb v 3.0. The surface proteins were BLASTp against Virulence Factor Data Base (VFDB) to predict virulent factors. Antigenicity prediction of the shortlisted proteins was further done using VAXIGEN v 2.0. The epitope mapping was done using the immune epitope database (IEDB). A multi-epitopes vaccine was built and a 3D structure was generated using 3Dprot online server. The docking analysis of the designed vaccine with immune receptors was carried out using PATCHDOCK. Molecular dynamics and post-simulation analyses were carried out using AMBER v20 to decipher the dynamics stability and intermolecular binding energies of the docked complexes.Communicated by Ramaswamy H. Sarma.

5.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37895850

RESUMO

Onion peels are often discarded, representing an unlimited amount of food by-products; however, they are a valuable source of bioactive phenolics. Thus, we utilized UPLC-MS/MS to analyze the metabolomic profiles of red (RO) and yellow (YO) onion peel extracts. The cytotoxic (SRB assay), anti-inflammatory (Griess assay), and antimicrobial (sensitivity test, MIC, antibiofilm, and SP-SDS tests) properties were assessed in vitro. Additionally, histological analysis, immunohistochemistry, and ELISA tests were conducted to investigate the healing potential in excisional skin wound injury and Candida albicans infection in vivo. RO extract demonstrated antibacterial activity, limited skin infection with C. albicans, and improved the skin's appearance due to the abundance of quercetin and anthocyanin derivatives. Both extracts reduced lipopolysaccharide-induced nitric oxide release in vitro and showed a negligible cytotoxic effect on MCF-7 and HT29 cells. When extracts were tested in vivo for their ability to promote tissue regeneration, it was found that YO peel extract had the greatest impact. Further biochemical analysis revealed that YO extract suppressed NLRP3/caspase-1 signaling and decreased inflammatory cytokines. Furthermore, YO extract decreased Notch-1 levels and boosted VEGF-mediated angiogenesis. Our findings imply that onion peel extract can effectively treat wounds by reducing microbial infection, reducing inflammation, and promoting tissue regeneration.

6.
Life (Basel) ; 13(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37763274

RESUMO

Human colostrum (HC) is essential for oral health as it is rich in probiotics that could affect the growth of the cariogenic S. mutans and its biofilm formation; hindering dental caries in advance. In this study, HC was collected from 36 healthy mothers 1-3 days postpartum. The effect of HC on oral health was carried out by assessing the impact of HC and its derived probiotics' cell-free supernatants (CFS) on the growth of S. mutans (using modified well diffusion) and its biofilm formation (using microtiter plate assay). Moreover, the effect of whole HC on L. rhamnosus, a probiotic oral bacterium, was examined. Probiotics were isolated and identified phenotypically by API 50 CH carbohydrate fermentation and genotypically by 16S rRNA amplification. The in vitro study revealed that HC has cariogenic activity and is associated with biofilm formation. Biofilm strength was inversely proportional to HC dilution (p-value < 0.0001). Nevertheless, HC and colostrum-derived probiotics improve oral health by inhibiting the growth of caries-inducing S. mutans with lower inhibition to L. rhamnosus probiotics. The CFS of isolated probiotics reduced the biofilm formation via the cariogenic S. mutans. These results are not only promising for caries eradication, but they also highlight the importance of breastfeeding infants from their first hours to shape healthy oral microbiota, protecting them from various diseases including dental caries.

7.
ACS Omega ; 8(25): 22406-22413, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396261

RESUMO

Piperine is an alkaloid, but its therapeutic efficacy is limited due to poor aqueous solubility. In this study, piperine nanoemulsions were prepared using oleic acid (oil), Cremophore EL (surfactant), and Tween 80 (co-surfactant) using the high-energy ultrasonication approach. The optimal nanoemulsion (N2) was further evaluated using transmission electron microscopy, release, permeation, antibacterial, and cell viability studies based on minimal droplet size and maximum encapsulation efficiency. The prepared nanoemulsions (N1-N6) showed a transmittance of more than 95%, a mean droplet size between 105 ± 4.11 and 250 ± 7.4 nm, a polydispersity index of 0.19 to 0.36, and a ζ potential of -19 to -39 mV. The optimized nanoemulsion (N2) showed significantly improved drug release and permeation compared with pure piperine dispersion. The nanoemulsions were stable in the tested media. The transmission electron microscopy image showed a spherical and dispersed nanoemulsion droplet. The antibacterial and cell line results of piperine nanoemulsions were significantly better than the pure piperine dispersion. The findings suggested that piperine nanoemulsions may be a more advanced nanodrug delivery system than conventional ones.

8.
Metabolites ; 13(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37233684

RESUMO

Antibacterial resistance bears a major threat to human health worldwide, causing about 1.2 million deaths per year. It is noteworthy that carbazole derivatives have shown a potential antibacterial activity, for example, 9-methoxyellipticine, which was isolated from Ochrosia elliptica Labill. roots (Apocynaceae) in the present study. An in vitro screening of the antibacterial activity of 9-methoxyellipticine was investigated against four multidrug-resistant (MDR) Klebsiella pneumoniae and Shiga toxin-producing Escherichia coli (STEC O157) as Gram-negative bacteria, in addition to Methicillin-resistant Staphylococcus aureus (MRSA) with Bacillus cereus as Gram-positive bacteria. The compound had significant antibacterial activity against the two Gram-negative isolates and lower activity against the Gram-positive ones. The synergistic use of 9-methoxyellipticine and antibiotics was successfully effective in reducing the MDR microorganisms. Lung pneumonia and kidney infection mice models were used to investigate the compound's efficacy in vivo for the first time. Noteworthy reductions in K. pneumoniae and STEC shedding and the colonization were observed, with a reduction in pro-inflammatory factors and immunoglobulin levels. Other related lesions such as inflammatory cell infiltration, alveolar interstitial congestion, and edema were noticed to occur, lessened to different limits. The anti-STEC and anti-K. pneumoniae activities of 9-methoxyellipticine were revealed, providing a new alternative against MDR nosocomial infections.

9.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985581

RESUMO

Multidrug resistance (MDR) pathogens are usually associated with higher morbidity and mortality rates. Flavonoids are good candidates for the development of new potential antimicrobials. This research investigated whether luteolin 4'-neohesperidoside (L4N) has antibacterial and synergistic activities against four antibiotic-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, fosA-positive shiga toxin producing the Escherichia coli serogroup O111 (STEC O111), and Bacillus cereus. In vitro antimicrobial susceptibility testing revealed highly potent anti-MRSA (MIC of 106.66 ± 6.95 µg/mL), anti-K. pneumoniae (MIC of 53.33 ± 8.47 µg/mL) and anti-STEC O111 (MIC of 26.66 ± 5.23 µg/mL) activities. Significant synergistic combination was clearly noted in the case of gentamycin (GEN) against Gram-negative bacteria. In the case of B. cereus, the combination of vancomycin (VAN) with L4N could efficiently inhibit bacterial growth, despite the pathogen being VAN-resistant (MIC of 213.33 ± 7.9 µg/mL). In vivo evaluation of L4N showed significant decreases in K. pneumoniae and STEC shedding and colonization. Treatment could significantly diminish the levels of pro-inflammatory markers, tumor necrosis factor-alpha (TNF-α), and immunoglobulin (IgM). Additionally, the renal and pulmonary lesions were remarkably enhanced, with a significant decrease in the bacterial loads in the tissues. Finally, this study presents L4N as a potent substitute for traditional antibiotics with anti-STEC O111 and anti-K. pneumoniae potential, a finding which is reported here for the first time.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Luteolina/farmacologia , Antibacterianos/farmacologia , Bactérias , Vancomicina , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
10.
Molecules ; 27(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500724

RESUMO

Bovine milk is an important food component in the human diet due to its nutrient-rich metabolites. However, bovine subclinical mastitis alters the composition and quality of milk. In present study, California mastitis testing, somatic cell count, pH, and electrical conductivity were used as confirmatory tests to detect subclinical mastitis. The primary goal was to study metabolome and identify major pathogens in cows with subclinical mastitis. In this study, 29 metabolites were detected in milk using gas chromatography−mass spectrometry. Volatile acidic compounds, such as hexanoic acid, hexadecanoic acid, lauric acid, octanoic acid, n-decanoic acid, tricosanoic acid, tetradecanoic acid, and hypogeic acid were found in milk samples, and these impart good flavor to the milk. Metaboanalyst tool was used for metabolic pathway analysis and principal component estimation. In this study, EC and pH values in milk were significantly increased (p < 0.0001), whereas fat (p < 0.04) and protein (p < 0.0002) significantly decreased in animals with subclinical mastitis in comparison to healthy animals. Staphylococcus aureus was the predominant pathogen found (n = 54), followed by Escherichia coli (n = 30). Furthermore, antibiotic sensitivity revealed that Staphylococcus aureus was more sensitive to gentamicin (79.6%), whereas Escherichia coli showed more sensitivity to doxycycline hydrochloride (80%).


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Bovinos , Animais , Feminino , Humanos , Leite/química , Contagem de Células , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Escherichia coli
11.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364529

RESUMO

In this study, we synthesized hybrid systems based on manganese oxide@zinc oxide (Mn3O4@ZnO), using sol gel and hydrothermal methods. The hybrid materials exhibited hierarchical morphologies and structures characterized by the hexagonal phase of ZnO and the tetragonal phase of Mn3O4. The hybrid materials were tested for degradation of methylene blue (MB), methyl orange (MO), and malachite green (MG) under ultraviolet (UV) light illumination. The aim of this work was to observe the effect of various amounts of Mn3O4 in enhancing the photocatalytic properties of ZnO-based hybrid structures towards the degradation of MB, MO and MG. The ZnO photocatalyst showed better performance with an increasing amount of Mn3O4, and the degradation efficiency for the hybrid material containing the maximum amount of Mn3O4 was found to be 94.59%, 89.99%, and 97.40% for MB, MO and MG, respectively. The improvement in the performance of hybrid materials can be attributed to the high charge separation rate of electron-hole pairs, the co-catalytic role, the large number of catalytic sites, and the synergy for the production of high quantities of oxidizing radicals. The performance obtained from the various Mn3O4@ZnO hybrid materials suggest that Mn3O4 can be considered an effective co-catalyst for a wide range of photocatalytic materials such as titanium dioxide, tin oxide, and carbon-based materials, in developing practical hybrid photocatalysts for the degradation of dyes and for wastewater treatment.

12.
Curr Issues Mol Biol ; 44(10): 4490-4499, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286022

RESUMO

In the search for a new anti-MRSA lead compound, emodin was identified as a good lead against methicillin-resistant Staphylococcus aureus (MRSA). Emodin serves as a new scaffold to design novel and effective anti-MRSA agents. Because rational drug discovery is limited by the knowledge of the drug target, α-hemolysin of Staphylococcus aureus was used in this study because it has an essential role in Staphylococcus infections and because emodin shares structural features with compounds that target this enzyme. In order to explore emodin's interactions with α-hemolysin, all possible ligand binding pockets were identified and investigated. Two ligand pockets were detected based on bound ligands and other reports. The third pocket was identified as a cryptic site after molecular dynamics (MD) simulations. MD simulations were conducted for emodin in each pocket to identify the most plausible ligand site and to aid in the design of potent anti-MRSA agents. Binding of emodin to site 1 was most stable (RMSD changes within 1 Å), while in site 2, the binding pose of emodin fluctuated, and it left after 20 ns. In site 3, it was stable during the first 50 ns, and then it started to move out of the binding site. Site 1 is a possible ligand binding pocket, and this study sheds more light on interaction types, binding mode, and key amino acids involved in ligand binding essential for better lead design. Emodin showed an IC50 value of 6.3 µg/mL, while 1, 6, and 8 triacetyl emodin showed no activity against MRSA. A molecular modeling study was pursued to better understand effective binding requirements for a lead.

13.
PeerJ ; 10: e13482, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35642201

RESUMO

The objective of the present study was to improve the dissolution rate and aphrodisiac activity of tadalafil by using hydrophilic polymers. Solid dispersions were prepared by solvent evaporation-Rota evaporator using Koliphore 188, Kollidon® VA64, and Kollidon® 30 polymers in a 1:1 ratio. Prepared tadalafil-solid dispersions (SDs) evaluated for yield, drug content, micromeritics properties, physicochemical characterizations, and aphrodisiac activity assessment. The optimized SDs TK188 showed size (2.175 ± 0.24 µm), percentage of content (98.89 ± 1.23%), yield (87.27 ± 3.13%), bulk density (0.496 ± 0.005 g/cm3), true density (0.646 ± 0.003 g/cm3), Carr's index (23.25 ± 0.81), Hausner ratio (1.303 ± 0.003) and angle of repose (<25°). FTIR spectrums revealed tadalafil doesn't chemically interact with used polymers. XRD and DSC analysis represents TK188 SDs were in the amorphous state. Drug release was 97.17 ± 2.43% for TK188, whereas it was 32.76 ± 2.65% for pure drug at the end of 2 h with 2.96-fold increase in dissolution and followed release kinetics of Korsmeyer Peppa's model. MDT and DE were noted to be 17.48 minutes and 84.53%, respectively. Furthermore, TK188 SDs showed relative improvement in the sexual behavior of the male rats. Thus the developed SDs TK188 could be potential tadalafil carriers for the treatment of erectile dysfunction.


Assuntos
Afrodisíacos , Disfunção Erétil , Ratos , Masculino , Animais , Humanos , Polímeros/química , Povidona/química , Tadalafila/química , Disfunção Erétil/tratamento farmacológico , Solubilidade
14.
Saudi J Biol Sci ; 29(4): 2532-2540, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531156

RESUMO

Marine ecosystems are highly dependent on macroalgea in providing food and shelter for aquatic organisms, interacting with many bacteria and mostly producing secondary metabolites of potent therapeutic antibacterial property. Screening of marine microbial secondary metabolites of valuable biotechnological and therapeutical applications are now extensively studied. In this study, Bacillus spp. identified by DNA sequencing and found associated with Turbinaria ornata, was screened and characterized for its cell free supernatant (CFS) possible antimicrobial and antibiofilm applications. Among the 7 microbial isolates tested, CFS greatly affected Bacillus subitilis (12 mm) and inhibited equally the yeast isolates Candida albicans, Candida tropicalis and Candida glabrata (10 mm) and had no or negligible effect on S.aureus, E.coli, P. aeruginosa. As for the CFS antibiofilm activity, no difference was revealed from the positive control. Algal crude extracts (methanol, acetone and aqueous), on the other hand, were similarly tested for their antimicrobial activity against the seven microbial isolates, where highest activity was observed with the aqueous crude extract against Staphylococcus aureus(10 mm) and Pseudomonas aeruginosa (9 mm) compared to the negligible effects of methanol and acetone crude extracts. Chemical analysis was performed to reveal the major constituents of both crude algal extracts and Bacillus spp. CFS. FTIR spectrum of the bacterial CFS indicated the presence of bacteriocin as the major lipopeptide responsible for its biological activity. Whereas, methanol and water crude algal extract GC-MS spectra revealed different chemical groups of various combined therapeutical activity mainly Naphthalene, amino ethane-sulfonic acid, pyrlene, Biotin and mercury chloromethyl correspondingly. Thus, the present study, demonstrated the moderate activity of both crude algal extract and the bacterial CFS, however, further investigations are needed for a better biological activity.

15.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458007

RESUMO

Rheumatoid arthritis (RA) is a systemic, chronic autoimmune disease that causes disability due to progressive inflammation and destruction of the tissues around the joints. Methotrexate is mainly used to prevent the progression of joint destruction and reduce the deformity. The major challenge in treating RA with methotrexate is the systemic side effects that limit dose escalation. Hence, a novel formulation of a methotrexate-loaded nanoemulsion for subcutaneous administration was developed that aims to deliver methotrexate into the system via the lymph. The methotrexate-loaded nanoemulsion was prepared by using the aqueous-titration method. The prepared nanoemulsion was investigated for particle size, surface charge, surface morphology, entrapment efficiency, DSC (differential scanning colorimetry), drug release, hemocompatibility assay, and cytotoxicity, as well as anti-arthritic and stability studies. The vesicle size, zeta potential, PDI (polydispersity index), and entrapment efficiency of the optimized nanoemulsion were 87.89 ± 2.86 nm, 35.9 ± 0.73 mV, 0.27, and 87 ± 0.25%, respectively. The DSC study showed that the crystalline methotrexate was converted to an amorphous form and the drug was fully incorporated into the vesicles. After 72 h, the optimized nanoemulsion showed a drug release of 96.77 ± 0.63%, indicating a sustained-release dosage form. Cytocompatibility testing by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay on macrophage cell lines showed that the nanoemulsion was non-toxic. The formulation showed significant anti-arthritic activity compared to the marketed drug solution. In addition, the nanoemulsion containing methotrexate remained stable for three months when stored at a low temperature. Since the nanoemulsion containing methotrexate has excellent physicochemical properties and lowers systemic side effects by targeted delivery, it is a desirable technology for subcutaneous drug delivery.

16.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267744

RESUMO

We prepared apigenin (APG)-loaded bilosomes (BLs) and evaluated them for vesicle size, zeta-potential and encapsulation efficiency. The formulations were prepared with cholesterol (CHL), sodium deoxy cholate (SDC), Tween 80 (T80) and phosphatidylcholine (PC) using solvent evaporation method. The prepared formulations showed the optimum result was coated with much mucoadhesive polymer chitosan (CH, 0.25 and 0.5% w/v). The chitosan-coated bilosomes (CH-BLs) were further evaluated for surface morphology, drug−polymer interaction, mucoadhesion, permeation, antimicrobial activity and cell viability. The prepared APG-BLs showed nano-metric size (211 ± 2.87 nm to 433 ± 1.98 nm), polydispersibility index <0.5, negative zeta potential (−15 to −29 mV) and enhanced encapsulation efficiency (69.5 ± 0.93 to 81.9 ± 1.3%). Based on these findings, selected formulation (F2) was further coated with chitosan and showed a marked increase in vesicle size (298 ± 3.56 nm), a positive zeta potential (+17 mV), superior encapsulation efficiency (88.1 ± 1.48%) and improved drug release (69.37 ± 1.34%). Formulation F2C1 showed significantly enhanced permeation and mucoadhesion (p < 0.05) compared to formulation F2 due to the presence of CH as a mucoadhesive polymer. The presence of CH on the surfaces of BLs helps to open the tight membrane junctions and leads to enhanced permeation. A TEM study revealed non-aggregated smooth surface vesicles. The antimicrobial and cell viability assessment revealed better effects in terms of zone of inhibition and cell line assessment against two different cancer cell line. From the study, it can be concluded that APG-CHBLs could be a superior alternative to conventional delivery systems.

17.
Pharmaceutics ; 13(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34371777

RESUMO

The present study aims to prepare and optimize butenafine hydrochloride NLCs formulation using solid and liquid lipid. The optimized selected BF-NLCopt was further converted into Carbopol-based gel for topical application for the treatment of fungal infection. Box Behnken design was employed to optimize the nanostructure lipids carriers (NLCs) using the lipid content (A), Tween 80 (B), and homogenization cycle (C) as formulation factors at three levels. Their effects were observed on the particle size (Y1) and entrapment efficiency (Y2). The selected formulation was converted into gel and further assessed for gel characterization, drug release, anti-fungal study, irritation study, and stability study. The solid lipid (Compritol 888 ATO), liquid lipid (Labrasol), and surfactant (tween 80) were selected based on maximum solubility. The optimization result showed a particle size of 111 nm with high entrapment efficiency of 86.35% for BF-NLCopt. The optimized BF-NLCopt converted to gel (1% w/v, Carbopol 934) and showed ideal gel evaluation results (drug content 99.45 ± 2.11, pH 6.5 ± 0.2, viscosity 519 ± 1.43 CPs). The drug release study result depicted a prolonged drug release (65.09 ± 4.37%) with high drug permeation 641.37 ± 46.59 µg (32.07 ± 2.32%) than BF conventional gel. The low value of irritation score (0.17) exhibited negligible irritation on the skin after application. The anti-fungal result showed greater efficacy than the BF gel at both time points. The overall conclusion of the results revealed NLCs-based gel of BF as an ideal delivery system to treat the fungal infection.

18.
Pharmaceutics ; 13(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200251

RESUMO

Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.

19.
Artigo em Inglês | MEDLINE | ID: mdl-34071692

RESUMO

The study aimed to prepare green nanoemulsion (GNE) multi-components ((water/dimethyl sulfoxide-transcutol/isopropyl alcohol/capmul MCM C8 (CMC8)) to remove rifampicin (RIF) from a contaminated aqueous bulk solution. Pseudo ternary phase diagrams dictated several batches of GNE prepared following the reported method. Selected nanoemulsions (NF1-NF5) were characterized for morphology, globular size, size distribution (polydispersity index, PDI), viscosity, zeta potential, refractive index (RI), and free-thaw kinetic stability. They were investigated for percent removal efficiency (%RE) of RIF from the bulk aqueous solution for varied time intervals (10-60 min). Finally, scanning electron microscopy-energy dispersive x-ray (SEM-EDX) and inductive coupled plasma-optical emission system (ICP-OE) were used to confirm the extraction of trace content of dimethyl sulfoxide (DMSO) and others in the treated water. Considering the data obtained for globule size, PDI, viscosity, zeta potential, freeze-thaw stability, and refractive index, NF5 was the most suitable for RIF removal. The largest %RE value (91.7%) was related to NF5, which may be prudent to correlate with the lowest value (~39 nm) of size (maximum surface area available for contact adsorption), PDI (0.112), and viscosity (82 cP). Moreover, %RE was profoundly influenced by the content of CMC8 and the aqueous phase. These two phases had immense impact on the viscosity, size, and RI. The percent content of water, Smix, and CMC8 were 15% w/w), 60% w/w, and 25% w/w, respectively in NF5. SEM-EDX and ICP-OE confirmed the absence of DMSO and other hydrophilic components in the treated water. Thus, efficient NF5 could be a promising option to the conventional method to decontaminate the polluted aqueous system.


Assuntos
Nanopartículas , Rifampina , Adsorção , Emulsões , Tamanho da Partícula , Viscosidade , Água
20.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920952

RESUMO

The increasing prevalence of microbial infections and the emergence of resistance to the currently available antimicrobial drugs urged the development of potent new chemical entities with eminent pharmacokinetic and/or pharmacodynamic profiles. Thus, a series of new indole-triazole conjugates 6a-u was designed and synthesized to be assessed as new antimicrobial candidates using the diameter of the inhibition zone and minimum inhibitory concentration assays against certain microbial strains. Their in vitro antibacterial evaluation revealed good to moderate activity against most of the tested Gram-negative strains with diameter of the inhibition zone (DIZ) values in the range of 11-15 mm and minimum inhibition concentration (MIC) values around 250 µg/mL. Meanwhile, their in vitro antifungal evaluation demonstrated a potent activity against Candida tropicalis with MIC value as low as 2 µg/mL for most of the tested compounds. Moreover, compound 6f is the most potent congener with an MIC value of 2 µg/mL against Candida albicans.


Assuntos
Antifúngicos/farmacologia , Indóis/química , Triazóis/química , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA