Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 352, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978423

RESUMO

BACKGROUND: Neisseria meningitidis can be carried asymptomatically in the human oropharynx without causing symptoms. Meningococcal carriage is relevant to the epidemiology of invasive meningococcal disease (IMD). No carriage studies have been performed among the general population in Lithuania, whereas the incidence of IMD in Lithuania was among the highest in European countries from 2009 to 2019. RESULTS: We analyzed a total of 401 oropharyngeal samples collected from university students from December 2021 to February 2023 for N. meningitidis carriage using direct swab PCR assays and culture. The overall carriage prevalence based on both or either swab PCR or culture was 4.99%. PCR-based assays were used to characterize 15 carriage isolates, including detection of genogroup, multilocus sequence typing profile, and typing of antigens PorA and FetA. The most common carriage isolates were capsule null locus (cnl), accounting for 46.7%, followed by genogroups B (26.7%) and Y (13.3%). We also performed a molecular characterization of invasive N. meningitidis isolates collected during the COVID-19 pandemic and post-pandemic period to understand better the meningococcal carriage in the context of prevailing invasive strains. Despite the substantial decrease in the incidence of IMD during the 2020-2022 period, clonal complex 32 (CC32) of serogroup B continued to be the most prevalent IMD-causing CC in Lithuania. However, CC32 was not detected among carriage isolates. The most common CCs were CC269, CC198, and CC1136. The antigen peptide variants found in most carried isolates were classified as 'insufficient data' according to the MenDeVAR Index to evaluate the potential coverage by the 4CMenB vaccine. Nearly half of the isolates were potentially covered by the Men-Fhbp vaccine. Resistance to ciprofloxacin was detected only for one cnl isolate. All isolates were susceptible to penicillin and ceftriaxone. Our analysis identified frequent partying (≥ 4 times/month) as a risk factor for meningococcal carriage, whereas smoking, living in a dormitory, and previous COVID-19 illness were not associated with the carriage. CONCLUSIONS: Our study revealed a low prevalence of meningococcal carriage among university students in Lithuania. The carriage isolates showed genetic diversity, although almost half of them were identified as having a null capsule locus.


Assuntos
Infecções Meningocócicas , Vacinas Meningocócicas , Neisseria meningitidis , Masculino , Humanos , Feminino , Neisseria meningitidis/genética , Infecções Meningocócicas/epidemiologia , Lituânia/epidemiologia , Pandemias , Universidades , Sorogrupo , Vacinas Bacterianas , Estudantes , Antígenos de Bactérias/genética
2.
J Virol Methods ; 298: 114296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560109

RESUMO

Zoonotic transmission of Hendra virus (HeV) from primary hosts (pteropid bats) to horses, and, occasionally, onward adventitious spread to humans, is associated with high mortality rates in both affected secondary species. The introduction of an effective recombinant G protein vaccine for use in horses has been a major advance for the suppression of disease risk. However, equine HeV vaccination induces neutralising antibody that is indistinguishable from a post infection immune response when using most first line serology assays (eg. VNT and some ELISAs). We have constructed and evaluated an IgM antibody capture (MAC) ELISA which employs yeast expressed HeV nucleoprotein (N). All other serology tests use the G protein which does not detect early infection and is present in the current Hendra virus vaccine and may cause ambiguity in interpretation of results. Thus, this is the first test developed using a N protein which can successfully detect a recent (primarily within the last four weeks) infection of horses with HeV and is not affected by vaccination induced antibody. Testing a limited panel (21 samples) of post infection sera, a normal serum panel (288 samples) and a post vaccination panel (163 samples), we have estimated DSe to be 100 % (95 % CI, 83.9-100.0 %) and DSp to be 98.4 % (95 % CI, 96.8-99.4 %) relative to assigned serology results (VNT, ELISA and Luminex) for the test panels. The HeV IgM MAC ELISA is intended to supplement other molecular and serology test results, with selective use, and is the only serology test which can provide an indication for recent infection which is otherwise not available.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Animais , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/veterinária , Cavalos , Imunoglobulina M
3.
Pathogens ; 10(3)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804525

RESUMO

The description of Gardnerella vaginalis was recently updated and three new species, including nine genome species within Gardnerella, were defined using whole genome sequences and matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. A fast and simple method based on readily available techniques would be of immense use to identify Gardnerella species in research and clinical practice. Here we show that 34 previously characterized Gardnerella isolates were assigned to the species using partial chaperonin cpn60 sequences. The MALDI Biotyper from Bruker Daltonik GmbH demonstrated the capability to differentiate the phylogenetically diverse groups composed of G. vaginalis/G. piotii and G. leopoldii/G. swidsinskii. Among the phenotypic properties that characterize Gardnerella species are sialidase and ß-galactosidase activities. Our data confirmed that the NanH3 enzyme is responsible for sialidase activity in Gardnerella spp. isolates. Almost all G. piotii isolates displayed a sialidase positive phenotype, whereas the majority of G. vaginalis strains were sialidase negative. G. leopoldii and G. swidskinskii displayed a sialidase negative phenotype. ß-galactosidase is produced exclusively in G. vaginalis strains. Earlier determined phenotypic characteristics associated with virulence of Gardnerella isolates now assigned to the defined species may provide insights on how diverse species contribute to shaping the vaginal microbiome.

4.
Pathogens ; 9(9)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867033

RESUMO

Intensive horizontal gene transfer may generate diversity and heterogeneity within the genus Gardnerella. Restriction-modification (R-M) systems and CRISPR-Cas are the principal defense tools against foreign DNA in bacteria. Nearly half of the tested Gardnerella spp. isolates harbored the CRISPR-Cas system. Several putative R-M systems of Gardnerella spp. strains were identified in the REBASE database. However, there was no experimental evidence for restriction endonuclease (REase) activity in the isolates. We showed that G. vaginalis strain ATCC 14018 contains the REase R.Gva14018I, which recognizes GGCC and most probably generates blunt ends on cleavage. Bioinformatics evidence and the activity of recombinant methyltransferase M.Gva14018I in vivo indicate that ATCC 14018 possesses a HaeIII-like R-M system. The truncated R.Gva14018I-4 lacking the C-terminal region was expressed in Escherichia coli and displayed wild-type REase specificity. Polyclonal antibodies against R.Gva14018I-4 detected the wild-type REase in the cell lysate of ATCC 14018. The cofactor requirements for activity and bioinformatics analysis indicated that R.Gva14018I belongs to the PD-(D/E)XK family of REases. The REase-like activity was observed in 5 of 31 tested Gardnerella spp. strains, although none of these matched the DNA digestion pattern of R.Gva14018I.

5.
PLoS One ; 13(7): e0200625, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001418

RESUMO

The well-known genotypic and phenotypic diversity of G. vaginalis resulted in its classification into at least four subgroups (clades) with diverse genomic properties. To evaluate the virulence potential of G. vaginalis subgroups, we analyzed the virulence-related phenotypic characteristics of 14 isolates of clade 1, 12 isolates of clade 2, 8 isolates of clade 4 assessing their in vitro ability to grow as a biofilm, produce the toxin vaginolysin, and express sialidase activity. Significant differences in VLY production were found (p = 0.023), but further analysis of clade pairs did not confirm this finding. The amount of biofim did not differ significantly among the clades. Analysis of sialidase activity indicated statistically significant differences among the clades (p < 0.001). Production of active recombinant G. vaginalis sialidase demonstrated the link between the sld gene and enzymatic activity, which may be differentially regulated at the transcriptional level. Statistical classification analysis (random forests algorithm) showed that G. vaginalis clades could be best defined by the profiles of two phenotypic characteristics: sialidase activity and vaginolysin production. The results of principal component analysis and hierarchical clustering suggested that all isolates can be subgrouped into three clusters, the structures of which are determined based on phenotypic characteristics of the isolates. Clade 4 was the most homogenous group, as all isolates were found in the same cluster, which is characterized by low production of all studied virulence factors. Clade 2 isolates were mainly distributed between two clusters, whereas clade 1 isolates were found in all three clusters that were characterized by a distinct profile of phenotypic characteristics. Our findings suggest that G. vaginalis subgroups with different virulence potential might play distinct roles in vaginal microbiota.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Gardnerella vaginalis , Neuraminidase , Fenótipo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Feminino , Gardnerella vaginalis/enzimologia , Gardnerella vaginalis/genética , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/patogenicidade , Humanos , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/metabolismo
6.
Appl Microbiol Biotechnol ; 101(7): 2991-3004, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28102432

RESUMO

The aim of this study was to produce human parainfluenza virus type 4 (HPIV4) nucleocapsid (N) protein in yeast Saccharomyces cerevisiae expression system, to explore its structural and antigenic properties and to evaluate its applicability in serology. The use of an optimized gene encoding HPIV4 N protein amino acid (aa) sequence GenBank AGU90031.1 allowed high yield of recombinant N protein forming nucleocapsid-like particles (NLPs) in yeast. A substitution L332D disrupted self-assembly of NLPs, confirming the role of this position in the N proteins of Paramyxovirinae. Three monoclonal antibodies (MAbs) were generated against the NLP-forming HPIV4 N protein. They recognised HPIV4-infected cells, demonstrating the antigenic similarity between the recombinant and virus-derived N proteins. HPIV4 N protein was used as a coating antigen in an indirect IgG ELISA with serum specimens of 154 patients with respiratory tract infection. The same serum specimens were tested with previously generated N protein of a closely related HPIV2, another representative of genus Rubulavirus. Competitive ELISA was developed using related yeast-produced viral antigens to deplete the cross-reactive serum antibodies. In the ELISA either without or with competition using heterologous HPIV (2 or 4) N or mumps virus N proteins, the seroprevalence of HPIV4 N-specific IgG was, respectively, 46.8, 39.6 and 40.3% and the seroprevalence of HPIV2 N-specific IgG-47.4, 39.0 and 37.7%. In conclusion, yeast-produced HPIV4 N protein shares structural and antigenic properties of the native virus nucleocapsids. Yeast-produced HPIV4 and HPIV2 NLPs are prospective tools in serology.


Assuntos
Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Proteínas do Nucleocapsídeo/imunologia , Vírus da Parainfluenza 4 Humana/imunologia , Infecções Respiratórias/imunologia , Infecções por Rubulavirus/imunologia , Saccharomyces cerevisiae/genética , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Nucleocapsídeo , Proteínas do Nucleocapsídeo/sangue , Proteínas do Nucleocapsídeo/genética , Vírus da Parainfluenza 2 Humana/química , Vírus da Parainfluenza 2 Humana/genética , Vírus da Parainfluenza 2 Humana/imunologia , Vírus da Parainfluenza 4 Humana/química , Vírus da Parainfluenza 4 Humana/genética , Estudos Prospectivos , Proteínas Recombinantes/imunologia , Infecções Respiratórias/virologia , Saccharomyces cerevisiae/metabolismo , Estudos Soroepidemiológicos , Adulto Jovem
7.
Appl Microbiol Biotechnol ; 100(11): 4935-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26846623

RESUMO

Human bocaviruses (HBoV) are non-enveloped, single-stranded DNA viruses, classified into the genus Bocavirus in the family Parvoviridae. Self-assembled virus-like particles (VLPs) composed of the major capsid protein VP2 of HBoV1-4 and mosaic VLPs composed of both VP2 and VP1 capsid proteins of HBoV1 were generated in yeast Saccharomyces cerevisiae and used to detect HBoV-specific IgG in human serum. Recombinant HBoV VLPs were similar to native HBoV particles in size and morphology. The prevalence of HBoV infection in a group of Lithuanian patients with clinical symptoms of respiratory tract infection was studied using purified yeast-generated VLPs as antigens in a competitive enzyme immunoassay (EIA). After depletion of cross-reactive antibodies, the seroprevalence of HBoV1 was 44.2 % and the seroprevalence of HBoV2-4 was 35.7 %. Mosaic VLPs consisting of HBoV1 VP1 and VP2 proteins showed a stronger reactivity with HBoV1 IgG-positive human serum specimens, and two equivocal serum specimens were reinterpreted as positive. Thus, mosaic VLPs offer a more sensitive tool for HBoV1 serology than currently available serodiagnostics tests based on VP2 VLPs. In conclusion, yeast S. cerevisiae represents an efficient expression system for generating recombinant HBoV1-4 VLPs of diagnostic relevance.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bocavirus Humano/isolamento & purificação , Infecções por Parvoviridae/diagnóstico , Adolescente , Adulto , Idoso , Animais , Proteínas do Capsídeo/imunologia , Criança , Pré-Escolar , Clonagem Molecular , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Lituânia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Infecções por Parvoviridae/sangue , Infecções por Parvoviridae/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Manejo de Espécimes , Adulto Jovem
8.
Appl Microbiol Biotechnol ; 100(10): 4523-34, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26821928

RESUMO

The aim of this study was to investigate the suitability of yeast Saccharomyces cerevisiae expression system for the production of human parainfluenza virus type 2 (HPIV2) nucleocapsid (N) protein in the form of nucleocapsid-like particles (NLPs) and to characterize its antigenic structure. The gene encoding HPIV2 N amino acid (aa) sequence RefSeq NP_598401.1 was cloned into the galactose-inducible S. cerevisiae expression vector and its high-level expression was achieved. However, this recombinant HPIV2 N protein did not form NLPs. The PCR mutagenesis was carried out to change the encoded aa residues to the ones conserved across HPIV2 isolates. Synthesis of the modified proteins in yeast demonstrated that the single aa substitution NP_598401.1:p.D331V was sufficient for the self-assembly of NLPs. The significance of certain aa residues in this position was confirmed by analysing HPIV2 N protein structure models. To characterize the antigenic structure of NLP-forming HPIV2 N protein, a panel of monoclonal antibodies (MAbs) was generated. The majority of the MAbs raised against the recombinant NLPs recognized HPIV2-infected cells suggesting the antigenic similarity between the recombinant and virus-derived HPIV2 N protein. Fine epitope mapping revealed the C-terminal part (aa 386-504) as the main antigenic region of the HPIV2 N protein. In conclusion, the current study provides new data on the impact of HPIV2 N protein sequence variants on the NLP self-assembly and demonstrates an efficient production of recombinant HPIV2 N protein in the form of NLPs.


Assuntos
Antígenos Virais/genética , Proteínas do Nucleocapsídeo/biossíntese , Vírus da Parainfluenza 2 Humana , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Antígenos Virais/imunologia , Clonagem Molecular , Mapeamento de Epitopos , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas do Nucleocapsídeo/genética , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Virus Res ; 211: 209-21, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26541316

RESUMO

Hepatitis B virus (HBV) surface antigen (HBsAg) is considered to be the most important target for the diagnosis and immune prophylaxis of HBV infection. HBsAg-specific monoclonal antibodies (MAbs) are extensively used for studying the complex structure of the HBsAg, mapping the neutralizing epitopes and development of HBV diagnostic tests. However, the efficiency of anti-HBV binding strongly depends on the epitope structure and MAb capability to recognize different HBV variants. In the current study, 9 MAbs against yeast-expressed HBsAg of ayw2 serotype were generated and 7 of them were shown to recognize a linear epitope comprising amino acid (aa) residues 119-GPCRTCT-125 within the main antigenic "a" determinant of HBsAg. One MAb of the highest affinity (clone HB1) was selected for detailed cross-reactivity studies, generation of recombinant single-chain antibody (scFv) and molecular modelling of antibody-epitope interaction. The importance of each aa residue within the identified MAb epitope was determined by alanine substitution study that revealed aa residues C(121), T(123), C(124) and T(125) as essential for binding. These aa residues are highly conserved among HBV variants. In contrast, alanine substitution of G119, P120 and R122 had no or minor influence on the reactivity with the MAb. Certain aa residues at position 122 (either R or K) define different HBV serotypes (either d or y), therefore, the affinity of the MAb HB1 for the epitope with R122K substitution was determined to evaluate its diagnostic potential. The MAb recognized both epitope variants with high affinity. Sequence alignment of the MAb epitope within different HBV strains demonstrated that the shortest peptide recognized by the MAb 121-CR(K)TCT-125 is identical among different human HBV genotypes (HBV A-F, H) and monkey HBV species (HBVCP, HBVGO, HBVGB, WMHBV). In line with these data, the MAb HB1 was cross-reactive in Western blot with a large panel of antigens derived from different HBV genotypes. Recombinant scFv consisting of immunoglobulin VH and VL regions joined by a 20 aa-long linker was generated by cloning the respective cDNA sequences from hybridoma HB1. The recombinant scFv generated in Escherichia coli recognized the same epitope as the parental MAb HB1. Cloning of HB1 VH and VL regions allowed determination of their primary structure and subsequent computer modeling of antibody-epitope interaction. The generated molecular models of HB1 variable region with its target peptides were in accordance with experimental data showing the importance of certain aa residues in antibody binding. In conclusion, the current study describes new HBsAg-specific antibodies with HBV-neutralizing potency and a broad cross-reactivity against different HBV strains. The generated MAb HB1 will be of great value in diagnostic and research settings, while the recombinant HB1-derived scFv represents a promising "building block" for producing anti-HBV tools with a potential biopharmaceutical application.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-Hepatite B/imunologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Mapeamento de Epitopos , Hepatite B/virologia , Anticorpos Anti-Hepatite B/genética , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Humanos , Dados de Sequência Molecular
10.
J Gen Virol ; 91(Pt 3): 653-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19923267

RESUMO

Serological screening of sera from orang-utans demonstrated a high percentage of sera that cross-reacted with antigens of the polyomavirus (PyV) simian virus 40. Analysis of archival DNA samples from 71 Bornean and eight Sumatran orang-utans with a broad-spectrum PCR assay resulted in the detection of PyV infections in 11 animals from both species. Sequence analysis of the amplicons revealed considerable differences between the PyVs from Bornean and Sumatran orang-utans. The genome from two PyVs, one from each species, was therefore amplified and sequenced. Both viral genomes revealed a characteristic PyV architecture, but lacked an obvious agnogene. Neighbour-joining analysis positioned the viruses in a large cluster together with viruses from bats, bovines, rodents and several primate PyVs from chimpanzees, African green monkeys, squirrel monkeys and the human Merkel cell PyV.


Assuntos
Doenças dos Símios Antropoides/virologia , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Pongo abelii/virologia , Pongo pygmaeus/virologia , Infecções Tumorais por Vírus/veterinária , Sequência de Aminoácidos , Animais , Bornéu , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Ordem dos Genes , Genes Virais , Indonésia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Polyomavirus/genética , Infecções por Polyomavirus/virologia , Alinhamento de Sequência , Análise de Sequência de DNA , Sintenia , Infecções Tumorais por Vírus/virologia
11.
Vaccine ; 26(16): 1972-81, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18343539

RESUMO

The preS1phil, a hydrophilic component of the hepatitis B virus (HBV) preS1 sequence, was exposed on the surface of three widely used virus-like particle (VLP) carriers by (i) insertion into the HI loop of the murine polyomavirus (MPyV) VP1, (ii) N-terminal addition to the hepatitis B surface (HBs) protein, and (iii) insertion into the major immunodominant region (MIR) of three hepatitis B core (HBc) vectors with different structure of their C-termini. Adjuvant-free immunisation of Balb/c mice demonstrated high preS1-specific antibody responses, but strong Th1 cell activation with efficient induction of IgG2a isotype antibodies was observed only in those VLPs, and namely in two of three HBc derivatives, which contained packaged RNA.


Assuntos
Anticorpos Antivirais/sangue , Antígenos de Superfície da Hepatite B/imunologia , Vacinas contra Hepatite B/imunologia , Hepatite B/imunologia , Imunização , Precursores de Proteínas/imunologia , Vírion/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Feminino , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/química , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/química , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Injeções Subcutâneas , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Polyomavirus/química , Precursores de Proteínas/química , Precursores de Proteínas/genética , Células Th1/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vírion/química , Vírion/metabolismo
12.
Virology ; 354(2): 252-60, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-16904154

RESUMO

As polyomavirus major capsid protein VP1-derived virus-like particles (VLPs) have been demonstrated to be highly immunogenic, we studied their interaction with human dendritic cells (hDCs). Exposure of hDCs to VLPs originating from murine (MPyV) or hamster polyomavirus (HaPyV) induced hDC maturation. In contrast, exposure of hDCs to VLPs derived from human polyomaviruses (BK and JC) and simian virus 40 (SV40) only marginally induced DC maturation. The hDCs stimulated by HaPyV- or MPyV-derived VLPs readily produced interleukin-12 and stimulated CD8-positive T-cell responses in vitro. The highest frequencies of activated T cells were again observed after pulsing with HaPyV- and MPyV-derived VLPs. Monocyte-derived hDCs both bound and internalized the various tested polyomavirus VP1-derived VLPs with different levels of efficiency, partially explaining their individual maturation potentials. In conclusion, our data suggest a high variability in uptake of polyomavirus-derived VLPs and potency to induce hDC maturation.


Assuntos
Proteínas do Capsídeo/imunologia , Células Dendríticas/virologia , Polyomavirus/fisiologia , Vírion/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Polyomavirus/genética
13.
Gastroenterology ; 129(1): 234-45, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16012950

RESUMO

BACKGROUND & AIMS: Studies on the early steps in the life cycle of hepatitis B virus have been hampered by the lack of readily available target cells. In this study, we mapped a defined virus attachment site to primary hepatocytes that is essential for infection. METHODS: We used purified virus particles from human carrier plasma as an inoculum and primary cultures of tupaia hepatocytes as susceptible target cells and studied the inhibitory effect of amino-terminally acylated preS1-derived lipopeptides on infection interference. RESULTS: Infectivity of virus could be blocked efficiently in this system by amino-terminally acylated peptides containing amino acids 2-18 from the preS1 domain. The addition of amino acids 28-48 enhanced the inhibitory capacity, whereas amino acids 49-78 did not contribute to inhibition. Myristoylated preS1 peptides 2-48 bound strongly to tupaia hepatocytes but not to nonhepatic cells or rodent hepatocytes and thereby inhibited infection even at concentrations of 1 nmol/L completely. Particles consisting only of the small hepatitis B surface protein-the active component of current hepatitis B vaccines-did not bind at all to tupaia hepatocytes, but the addition of the preS1 domain to the particles allowed binding. CONCLUSIONS: The preS1 sequence 2-48 mediates attachment of the virus to its target cells, whereas the small surface protein seems to be involved in other steps. These findings indicate that the current subunit hepatitis B vaccines may be improved by the addition of distinct preS1 epitopes. Moreover, preS1 lipopeptides are promising candidates for specific antiviral therapy against hepatitis B infections.


Assuntos
Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Hepatite B/virologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Mapeamento Cromossômico , Hepatite B/tratamento farmacológico , Hepatite B/prevenção & controle , Antígenos de Superfície da Hepatite B/química , Vírus da Hepatite B/metabolismo , Hepatócitos/citologia , Hepatócitos/virologia , Humanos , Cinética , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Dados de Sequência Molecular , Ácido Mirístico/metabolismo , Ligação Proteica , Precursores de Proteínas/química , Estrutura Terciária de Proteína , Tupaia , Vírion/crescimento & desenvolvimento , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA