Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 24(1): 95-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16369538

RESUMO

Photosensitizers are chromophores that generate reactive oxygen species (ROS) upon light irradiation. They are used for inactivation of specific proteins by chromophore-assisted light inactivation (CALI) and for light-induced cell killing in photodynamic therapy. Here we report a genetically encoded photosensitizer, which we call KillerRed, developed from the hydrozoan chromoprotein anm2CP, a homolog of green fluorescent protein (GFP). KillerRed generates ROS upon irradiation with green light. Whereas known photosensitizers must be added to living systems exogenously, KillerRed is fully genetically encoded. We demonstrate the utility of KillerRed for light-induced killing of Escherichia coli and eukaryotic cells and for inactivating fusions to beta-galactosidase and phospholipase Cdelta1 pleckstrin homology domain.


Assuntos
Escherichia coli/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Rim/citologia , Rim/efeitos da radiação , Fármacos Fotossensibilizantes/metabolismo , Sequência de Bases , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Escherichia coli/fisiologia , Humanos , Luz , Dados de Sequência Molecular , Engenharia de Proteínas
2.
Nat Protoc ; 1(2): 947-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17406328

RESUMO

The phototoxic red fluorescent GFP-like protein KillerRed has recently been described. The phototoxicity of KillerRed exceeds that of EGFP by at least 1,000-fold, making it the first fully genetically encoded photosensitizer. KillerRed opens up new possibilities for precise light-induced cell killing and target protein inactivation. Because KillerRed is encoded by a gene, it can be expressed in a spatially and temporally regulated manner, under a chosen promoter, and fused with the desired protein of interest or localization signal. Here we provide a protocol for target protein inactivation in cell culture using KillerRed. As KillerRed is a new tool, the protocol focuses on aspects that will allow users to maximize the potential of this protein, guiding the design of chimeric constructs, recommended control experiments and preferred illumination parameters. The protocol, which describes target protein visualization and subsequent inactivation, is a 2- or 3-d procedure.


Assuntos
Proteínas de Fluorescência Verde/química , Substâncias Luminescentes/química , Bactérias/genética , Bactérias/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Luz , Substâncias Luminescentes/metabolismo , Ligação Proteica
3.
J Biol Chem ; 279(42): 43367-70, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15297465

RESUMO

The nature of coloration in many marine animals remains poorly investigated. Here we studied the blue pigment of a scyfoid jellyfish Rhizostoma pulmo and determined it to be a soluble extracellular 30-kDa chromoprotein with a complex absorption spectrum peaking at 420, 588, and 624 nm. Furthermore, we cloned the corresponding cDNA and confirmed its identity by immunoblotting and mass spectrometry experiments. The chromoprotein, named rpulFKz1, consists of two domains, a Frizzled cysteine-rich domain and a Kringle domain, inserted into one another. Generally, Frizzleds are members of a basic Wnt signal transduction pathway investigated intensely with regard to development and cancerogenesis. Kringles are autonomous structural domains found throughout the blood clotting and fibrinolytic proteins. Neither Frizzled and Kringle domains association with any type of coloration nor Kringle intrusion into Frizzled sequence was ever observed. Thus, rpulFKz1 represents a new class of animal pigments, whose chromogenic group remains undetermined. The striking homology between a chromoprotein and members of the signal transduction pathway provides a novel node in the evolution track of growth factor-mediated morphogenesis compounds.


Assuntos
Kringles/fisiologia , Proteínas Luminescentes/química , Cifozoários/química , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Pigmentos Biológicos/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrofotometria
4.
Biochem J ; 373(Pt 2): 403-8, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12693991

RESUMO

We have cloned an unusual colourless green fluorescent protein (GFP)-like protein from Aequorea coerulescens (acGFPL). The A. coerulescens specimens displayed blue (not green) luminescence, and no fluorescence was detected in these medusae. Escherichia coli expressing wild-type acGFPL showed neither fluorescence nor visible coloration. Random mutagenesis generated green fluorescent mutants of acGFPL, with the strongest emitters found to contain an Glu(222)-->Gly (E222G) substitution, which removed the evolutionarily invariant Glu(222). Re-introduction of Glu(222) into the most fluorescent random mutant, named aceGFP, converted it into a colourless protein. This colourless aceGFP-G222E protein demonstrated a novel type of UV-induced photoconversion, from an immature non-fluorescent form into a green fluorescent form. Fluorescent aceGFP may be a useful biological tool, as it was able to be expressed in a number of mammalian cell lines. Furthermore, expression of a fusion protein of 'humanized' aceGFP and beta-actin produced a fluorescent pattern consistent with actin distribution in mammalian cells.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Cifozoários/química , Animais , Células COS/citologia , Linhagem Celular , Chlorocebus aethiops , Escherichia coli/genética , Fibroblastos/metabolismo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/efeitos da radiação , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas Recombinantes de Fusão , Espectrometria de Fluorescência , Transfecção
5.
Biochem J ; 371(Pt 1): 109-14, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12472468

RESUMO

The tendency for tetramerization is the main disadvantage in the green fluorescent protein homologues from Anthozoa species. We report a universal method called hetero-oligomeric tagging, which diminishes troublesome consequences of tetramerization of Anthozoa-derived fluorescent proteins (FP) in intracellular protein labelling. This approach is based on the co-expression of the FP-tagged protein of interest together with an excess of free non-fluorescent FP mutant. The resulting FP heterotetramers contain only a single target polypeptide and, therefore, can be considered pseudo-monomeric. Feasibility of the method has been demonstrated with a red FP fused with cytoplasmic beta-actin or tubulin-binding protein Tau34. In addition, heterotetramers appeared to be a unique model for biophysical characterization of Anthozoa FPs in pseudo-monomeric state.


Assuntos
Antozoários/química , Bioquímica/métodos , Proteínas Luminescentes/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Células CHO , Cricetinae , Regulação da Expressão Gênica , Genes , Proteínas de Fluorescência Verde , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteína Vermelha Fluorescente
6.
Biochem J ; 368(Pt 1): 17-21, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12350221

RESUMO

Practical applications of green fluorescent protein ('GFP')-like fluorescent proteins (FPs) from species of the class Anthozoa (sea anemones, corals and sea pens) are strongly restricted owing to their oligomeric nature. Here we suggest a strategy to overcome this problem by the use of two covalently linked identical red FPs as non-oligomerizing fusion tags. We have applied this approach to the dimeric far-red fluorescent protein HcRed1 and have demonstrated superiority of the tandem tag in the in vivo labelling of fine cytoskeletal structures and tiny nucleoli. In addition, a possibility of effective fluorescence resonance energy transfer ('FRET') between enhanced yellow FP mutant ('EYFP') and tandem HcRed1 was demonstrated in a protease assay.


Assuntos
Fibroblastos/citologia , Actinas/química , Células Cultivadas , Proteínas Cromossômicas não Histona/química , Fibroblastos/química , Corantes Fluorescentes , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes , Microscopia de Fluorescência
7.
BMC Genomics ; 3: 15, 2002 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12065025

RESUMO

BACKGROUND: Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. RESULTS: Using a combination of Suppression Subtractive Hybridization (SSH) and Mirror Orientation Selection (MOS), we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element) was identified in one planarian strain. The PEVE genome (about 7.5 kb) consists of two unique regions (Ul and Us) flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep), and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. CONCLUSIONS: PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells.

8.
BMC Biochem ; 3: 7, 2002 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11972899

RESUMO

BACKGROUND: Within the family of green fluorescent protein (GFP) homologs, one can mark two main groups, specifically, fluorescent proteins (FPs) and non-fluorescent or chromoproteins (CPs). Structural background of differences between FPs and CPs are poorly understood to date. RESULTS: Here, we applied site-directed and random mutagenesis in order to to transform CP into FP and vice versa. A purple chromoprotein asCP (asFP595) from Anemonia sulcata and a red fluorescent protein DsRed from Discosoma sp. were selected as representatives of CPs and FPs, respectively. For asCP, some substitutions at positions 148 and 165 (numbering in accordance to GFP) were found to dramatically increase quantum yield of red fluorescence. For DsRed, substitutions at positions 148, 165, 167, and 203 significantly decreased fluorescence intensity, so that the spectral characteristics of these mutants became more close to those of CPs. Finally, a practically non-fluorescent mutant DsRed-NF was generated. This mutant carried four amino acid substitutions, specifically, S148C, I165N, K167M, and S203A. DsRed-NF possessed a high extinction coefficient and an extremely low quantum yield (< 0.001). These spectral characteristics allow one to regard DsRed-NF as a true chromoprotein. CONCLUSIONS: We located a novel point in asCP sequence (position 165) mutations at which can result in red fluorescence appearance. Probably, this finding could be applied onto other CPs to generate red and far-red fluorescent mutants. A possibility to transform an FP into CP was demonstrated. Key role of residues adjacent to chromophore's phenolic ring in fluorescent/non-fluorescent states determination was revealed.


Assuntos
Antozoários , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Sequência de Aminoácidos , Fluorescência , Proteínas de Fluorescência Verde , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Alinhamento de Sequência , Espectrometria de Fluorescência
9.
FEBS Lett ; 511(1-3): 11-4, 2002 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11821040

RESUMO

Recently, we cloned several fluorescent proteins of different colors homologous to Aequorea victoria green fluorescent protein, which have great biotechnological potential as in vivo markers of gene expression. However, later investigations revealed severe drawbacks in the use of novel fluorescent proteins (FPs), in particular, the formation of tetramers (tetramerization) and high molecular weight aggregates (aggregation). In this report, we employ a mutagenic approach to resolve the problem of aggregation. The elimination of basic residues located near the N-termini of FPs results in the generation of non-aggregating versions of several FPs, specifically, drFP583 (DsRed), DsRed-Timer, ds/drFP616, zFP506, zFP538, amFP486, and asFP595.


Assuntos
Cnidários , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação/genética , Substituição de Aminoácidos/genética , Animais , Clonagem Molecular , Cnidários/química , Cnidários/genética , Cor , Eletroforese em Gel de Poliacrilamida , Fluorescência , Proteínas Luminescentes/química , Peso Molecular , Mutagênese Sítio-Dirigida/genética , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA