Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1371, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355632

RESUMO

Antibiotic resistance is a significant global public health concern. Uropathogenic Escherichia coli sequence type (ST)131, a widely prevalent multidrug-resistant clone, is frequently associated with bacteraemia. This study investigates third-generation cephalosporin resistance in bloodstream infections caused by E. coli ST131. From 2013-2014 blood culture surveillance in Wales, 142 E. coli ST131 genomes were studied alongside global data. All three major ST131 clades were represented across Wales, with clade C/H30 predominant (n = 102/142, 71.8%). Consistent with global findings, Welsh strains of clade C/H30 contain ß-lactamase genes from the blaCTX-M-1 group (n = 65/102, 63.7%), which confer resistance to third-generation cephalosporins. Most Welsh clade C/H30 genomes belonged to sub-clade C2/H30Rx (58.3%). A Wales-specific sub-lineage, named GB-WLS.C2, diverged around 1996-2000. An introduction to North Wales around 2002 led to a localised cluster by 2009, depicting limited genomic diversity within North Wales. This investigation emphasises the value of genomic epidemiology, allowing the detection of genetically similar strains in local areas, enabling targeted and timely public health interventions.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli , Infecções por Escherichia coli/epidemiologia , País de Gales/epidemiologia , Genótipo , Proteínas de Escherichia coli/genética , Genômica , beta-Lactamases/genética , Bacteriemia/epidemiologia , Análise por Conglomerados , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética
2.
Sci Rep ; 11(1): 23372, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862385

RESUMO

The gut microbiota may modulate the disposition and toxicity of environmental contaminants within a host but, conversely, contaminants may also impact gut bacteria. Such contaminant-gut microbial connections, which could lead to alteration of host health, remain poorly known and are rarely studied in free-ranging wildlife. The polar bear (Ursus maritimus) is a long-lived, wide-ranging apex predator that feeds on a variety of high trophic position seal and cetacean species and, as such, is exposed to among the highest levels of biomagnifying contaminants of all Arctic species. Here, we investigate associations between mercury (THg; a key Arctic contaminant), diet, and the diversity and composition of the gut microbiota of polar bears inhabiting the southern Beaufort Sea, while accounting for host sex, age class and body condition. Bacterial diversity was negatively associated with seal consumption and mercury, a pattern seen for both Shannon and Inverse Simpson alpha diversity indices (adjusted R2 = 0.35, F1,18 = 8.00, P = 0.013 and adjusted R2 = 0.26, F1,18 = 6.04, P = 0.027, respectively). No association was found with sex, age class or body condition of polar bears. Bacteria known to either be involved in THg methylation or considered to be highly contaminant resistant, including Lactobacillales, Bacillales and Aeromonadales, were significantly more abundant in individuals that had higher THg concentrations. Conversely, individuals with higher THg concentrations showed a significantly lower abundance of Bacteroidales, a bacterial order that typically plays an important role in supporting host immune function by stimulating intraepithelial lymphocytes within the epithelial barrier. These associations between diet-acquired mercury and microbiota illustrate a potentially overlooked outcome of mercury accumulation in polar bears.


Assuntos
Ração Animal/toxicidade , Bactérias/classificação , Microbioma Gastrointestinal/efeitos dos fármacos , Mercúrio/toxicidade , Análise de Sequência de DNA/métodos , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Caniformia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Filogenia , RNA Ribossômico 16S/genética , Ursidae
3.
Cell ; 184(20): 5179-5188.e8, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34499854

RESUMO

We present evidence for multiple independent origins of recombinant SARS-CoV-2 viruses sampled from late 2020 and early 2021 in the United Kingdom. Their genomes carry single-nucleotide polymorphisms and deletions that are characteristic of the B.1.1.7 variant of concern but lack the full complement of lineage-defining mutations. Instead, the remainder of their genomes share contiguous genetic variation with non-B.1.1.7 viruses circulating in the same geographic area at the same time as the recombinants. In four instances, there was evidence for onward transmission of a recombinant-origin virus, including one transmission cluster of 45 sequenced cases over the course of 2 months. The inferred genomic locations of recombination breakpoints suggest that every community-transmitted recombinant virus inherited its spike region from a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7's set of mutations.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Pandemias , Recombinação Genética , SARS-CoV-2/genética , Sequência de Bases/genética , COVID-19/virologia , Biologia Computacional/métodos , Frequência do Gene , Genoma Viral , Genótipo , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido/epidemiologia , Sequenciamento Completo do Genoma/métodos
4.
Genome Biol ; 22(1): 196, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210356

RESUMO

In response to the ongoing SARS-CoV-2 pandemic in the UK, the COVID-19 Genomics UK (COG-UK) consortium was formed to rapidly sequence SARS-CoV-2 genomes as part of a national-scale genomic surveillance strategy. The network consists of universities, academic institutes, regional sequencing centres and the four UK Public Health Agencies. We describe the development and deployment of CLIMB-COVID, an encompassing digital infrastructure to address the challenge of collecting and integrating both genomic sequencing data and sample-associated metadata produced across the COG-UK network.


Assuntos
Computação em Nuvem , Genômica/organização & administração , SARS-CoV-2/genética , COVID-19/epidemiologia , Monitoramento Epidemiológico , Genoma Viral , Humanos , Análise de Sequência de DNA , Reino Unido , Interface Usuário-Computador , Sequenciamento Completo do Genoma
5.
Microb Genom ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459584

RESUMO

Burkholderia gladioli is a bacterium with a broad ecology spanning disease in humans, animals and plants, but also encompassing multiple beneficial interactions. It is a plant pathogen, a toxin-producing food-poisoning agent, and causes lung infections in people with cystic fibrosis (CF). Contrasting beneficial traits include antifungal production exploited by insects to protect their eggs, plant protective abilities and antibiotic biosynthesis. We explored the genomic diversity and specialized metabolic potential of 206 B. gladioli strains, phylogenomically defining 5 clades. Historical disease pathovars (pv.) B. gladioli pv. allicola and B. gladioli pv. cocovenenans were distinct, while B. gladioli pv. gladioli and B. gladioli pv. agaricicola were indistinguishable; soft-rot disease and CF infection were conserved across all pathovars. Biosynthetic gene clusters (BGCs) for toxoflavin, caryoynencin and enacyloxin were dispersed across B. gladioli, but bongkrekic acid and gladiolin production were clade-specific. Strikingly, 13 % of CF infection strains characterized were bongkrekic acid-positive, uniquely linking this food-poisoning toxin to this aspect of B. gladioli disease. Mapping the population biology and metabolite production of B. gladioli has shed light on its diverse ecology, and by demonstrating that the antibiotic trimethoprim suppresses bongkrekic acid production, a potential therapeutic strategy to minimize poisoning risk in CF has been identified.


Assuntos
Burkholderia gladioli/classificação , Fibrose Cística/microbiologia , Doenças das Plantas/microbiologia , Sequenciamento Completo do Genoma/métodos , Vias Biossintéticas , Ácido Bongcréquico/metabolismo , Burkholderia gladioli/genética , Burkholderia gladioli/patogenicidade , Burkholderia gladioli/fisiologia , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Trimetoprima/farmacologia
6.
Microbiol Resour Announc ; 9(42)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060263

RESUMO

The genomes of 450 members of Burkholderiaceae, isolated from clinical and environmental sources, were sequenced and assembled as a resource for genome mining. Genomic analysis of the collection has enabled the identification of multiple metabolites and their biosynthetic gene clusters, including the antibiotics gladiolin, icosalide A, enacyloxin, and cepacin A.

7.
EClinicalMedicine ; 22: 100344, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32510047

RESUMO

BACKGROUND: Early combination antiretroviral therapy (cART) reduces the size of the viral reservoir in paediatric and adult HIV infection. Very early-treated children may have higher cure/remission potential. METHODS: In an observational study of 151 in utero (IU)-infected infants in KwaZulu-Natal, South Africa, whose treatment adhered strictly to national guidelines, 76 infants diagnosed via point-of-care (PoC) testing initiated cART at a median of 26 h (IQR 18-38) and 75 infants diagnosed via standard-of-care (SoC) laboratory-based testing initiated cART at 10 days (IQR 8-13). We analysed mortality, time to suppression of viraemia, and maintenance of aviraemia over the first 2 years of life. FINDINGS: Baseline plasma viral loads were low (median 8000 copies per mL), with 12% of infants having undetectable viraemia pre-cART initiation. However, barely one-third (37%) of children achieved suppression of viraemia by 6 months that was maintained to >12 months. 24% had died or were lost to follow up by 6 months. Infant mortality was 9.3%. The high-frequency virological failure in IU-infected infants was associated not with transmitted or acquired drug-resistant mutations but with cART non-adherence (plasma cART undetectable/subtherapeutic, p<0.0001) and with concurrent maternal cART failure (OR 15.0, 95%CI 5.6-39.6; p<0.0001). High-frequency virological failure was observed in PoC- and SoC-tested groups of children. INTERPRETATION: The success of early infant testing and cART initiation strategies is severely limited by subsequent cART non-adherence in HIV-infected children. Although there are practical challenges to administering paediatric cART formulations, these are overcome by mothers who themselves are cART-adherent. These findings point to the ongoing obligation to address the unmet needs of the mothers. Eliminating the particular barriers preventing adequate treatment for these vulnerable women and infants need to be prioritised in order to achieve durable suppression of viraemia on cART, let alone HIV cure/remission, in HIV-infected children. FUNDING: Wellcome Trust, National Institutes of Health.

8.
Bioinformatics ; 36(6): 1681-1688, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693070

RESUMO

MOTIVATION: Influenza viruses represent a global public health burden due to annual epidemics and pandemic potential. Due to a rapidly evolving RNA genome, inter-species transmission, intra-host variation, and noise in short-read data, reads can be lost during mapping, and de novo assembly can be time consuming and result in misassembly. We assessed read loss during mapping and designed a graph-based classifier, VAPOR, for selecting mapping references, assembly validation and detection of strains of non-human origin. RESULTS: Standard human reference viruses were insufficient for mapping diverse influenza samples in simulation. VAPOR retrieved references for 257 real whole-genome sequencing samples with a mean of >99.8% identity to assemblies, and increased the proportion of mapped reads by up to 13.3% compared to standard references. VAPOR has the potential to improve the robustness of bioinformatics pipelines for surveillance and could be adapted to other RNA viruses. AVAILABILITY AND IMPLEMENTATION: VAPOR is available at https://github.com/connor-lab/vapor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Influenza Humana , Algoritmos , Genoma , Humanos , Análise de Sequência de DNA , Software
9.
ISME J ; 13(12): 2916-2926, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378786

RESUMO

The gut microbiota plays a critical role in host health, yet remains poorly studied in wild species. Polar bears (Ursus maritimus), key indicators of Arctic ecosystem health and environmental change, are currently affected by rapid shifts in habitat that may alter gut homeostasis. Declining sea ice has led to a divide in the southern Beaufort Sea polar bear subpopulation such that an increasing proportion of individuals now inhabit onshore coastal regions during the open-water period ('onshore bears') while others continue to exhibit their typical behaviour of remaining on the ice ('offshore bears'). We propose that bears that have altered their habitat selection in response to climate change will exhibit a distinct gut microbiota diversity and composition, which may ultimately have important consequences for their health. Here, we perform the first assessment of abundance and diversity in the faecal microbiota of wild polar bears using 16S rRNA Illumina technology. We find that bacterial diversity is significantly higher in onshore bears compared to offshore bears. The most enriched OTU abundance in onshore bears belonged to the phylum Proteobacteria, while the most depleted OTU abundance within onshore bears was seen in the phylum Firmicutes. We conclude that climate-driven changes in polar bear land use are associated with distinct microbial communities. In doing so, we present the first case of global change mediated alterations in the gut microbiota of a free-roaming wild animal.


Assuntos
Bactérias/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal , Ursidae/microbiologia , Animais , Animais Selvagens/microbiologia , Regiões Árticas , Bactérias/classificação , Bactérias/genética , Mudança Climática , DNA Bacteriano/genética , Ecossistema , Camada de Gelo/química , Filogenia , RNA Ribossômico 16S/genética
10.
Microb Genom ; 5(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170060

RESUMO

Pseudomonas aeruginosa is a highly versatile, antibiotic-resistant Gram-negative bacterium known for causing opportunistic infections and contamination of industrial products. Despite extensive genomic analysis of clinical P. aeruginosa strains, no genomes exist for preservative-tolerant industrial strains. A unique collection of 69 industrial isolates was assembled and compared to clinical and environmental strains; 16 genetically distinct industrial strains were subjected to array tube genotyping, multilocus sequence typing and whole-genome sequencing. The industrial strains possessed high preservative tolerance and were dispersed widely across P. aeruginosa as a species, but recurrence of strains from the same lineage within specific industrial products and locations was identified. The industrial P. aeruginosa genomes (mean=7.0 Mb) were significantly larger than those of previously sequenced environmental (mean=6.5 Mb; n=19) and clinical (mean=6.6 Mb; n=66) strains. Complete sequencing of the P. aeruginosa industrial strain RW109, which encoded the largest genome (7.75 Mb), revealed a multireplicon structure including a megaplasmid (555 265 bp) and large plasmid (151 612 bp). The RW109 megaplasmid represented an emerging plasmid family conserved in seven industrial and two clinical P. aeruginosa strains, and associated with extremely stress-resilient phenotypes, including antimicrobial resistance and solvent tolerance. Here, by defining the detailed phylogenomics of P. aeruginosa industrial strains, we show that they uniquely possess multireplicon, megaplasmid-bearing genomes, and significantly greater genomic content worthy of further study.


Assuntos
Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Plasmídeos/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , DNA Bacteriano/genética , Humanos , Microbiologia Industrial , Filogenia , Replicon , Sequenciamento Completo do Genoma
11.
Nat Microbiol ; 4(6): 996-1005, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30833726

RESUMO

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B. ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B. ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B. ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia cepacia complex bacteria. Removal of the third replicon reduced B. ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.


Assuntos
Agentes de Controle Biológico/metabolismo , Agentes de Controle Biológico/farmacologia , Burkholderia/genética , Burkholderia/metabolismo , Lactonas/metabolismo , Lactonas/farmacologia , Animais , Sequência de Bases , Complexo Burkholderia cepacia/genética , DNA Bacteriano/genética , Modelos Animais de Doenças , Genes Bacterianos/genética , Camundongos , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Plasmídeos , Pythium/efeitos dos fármacos , Pythium/patogenicidade , Proteínas Repressoras/classificação , Proteínas Repressoras/genética , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Microbiologia do Solo , Transativadores/classificação , Transativadores/genética , Virulência
12.
FEMS Microbiol Lett ; 365(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548026

RESUMO

Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development.


Assuntos
Proteínas de Bactérias/genética , Detergentes/farmacologia , Conservantes Farmacêuticos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Óperon/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Quinolonas/farmacologia , Tiazóis/farmacologia
13.
Thorax ; 2017 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-28844058

RESUMO

While Pseudomonas aeruginosa (PA) cross-infection is well documented among patients with cystic fibrosis (CF), the equivalent risk among patients with non-CF bronchiectasis (NCFB) is unclear, particularly those managed alongside patients with CF. We performed analysis of PA within a single centre that manages an unsegregated NCFB cohort alongside a segregated CF cohort. We found no evidence of cross-infection between the two cohorts or within the segregated CF cohort. However, within the unsegregated NCFB cohort, evidence of cross-infection was found between three (of 46) patients. While we do not presently advocate any change in the management of our NCFB cohort, longitudinal surveillance is clearly warranted.

14.
J Am Chem Soc ; 139(23): 7974-7981, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28528545

RESUMO

An antimicrobial activity screen of Burkholderia gladioli BCC0238, a clinical isolate from a cystic fibrosis patient, led to the discovery of gladiolin, a novel macrolide antibiotic with potent activity against Mycobacterium tuberculosis H37Rv. Gladiolin is structurally related to etnangien, a highly unstable antibiotic from Sorangium cellulosum that is also active against Mycobacteria. Like etnangien, gladiolin was found to inhibit RNA polymerase, a validated drug target in M. tuberculosis. However, gladiolin lacks the highly labile hexaene moiety of etnangien and was thus found to possess significantly increased chemical stability. Moreover, gladiolin displayed low mammalian cytotoxicity and good activity against several M. tuberculosis clinical isolates, including four that are resistant to isoniazid and one that is resistant to both isoniazid and rifampicin. Overall, these data suggest that gladiolin may represent a useful starting point for the development of novel drugs to tackle multidrug-resistant tuberculosis. The B. gladioli BCC0238 genome was sequenced using Single Molecule Real Time (SMRT) technology. This resulted in four contiguous sequences: two large circular chromosomes and two smaller putative plasmids. Analysis of the chromosome sequences identified 49 putative specialized metabolite biosynthetic gene clusters. One such gene cluster, located on the smaller of the two chromosomes, encodes a trans-acyltransferase (trans-AT) polyketide synthase (PKS) multienzyme that was hypothesized to assemble gladiolin. Insertional inactivation of a gene in this cluster encoding one of the PKS subunits abrogated gladiolin production, confirming that the gene cluster is responsible for biosynthesis of the antibiotic. Comparison of the PKSs responsible for the assembly of gladiolin and etnangien showed that they possess a remarkably similar architecture, obfuscating the biosynthetic mechanisms responsible for most of the structural differences between the two metabolites.


Assuntos
Antibacterianos/farmacologia , Burkholderia gladioli/química , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/química , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Testes de Sensibilidade Microbiana , Conformação Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade
15.
J Bacteriol ; 199(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28439036

RESUMO

Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the ß-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization.IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted.


Assuntos
Complexo Burkholderia cepacia/genética , Pseudomonas/genética , Antibacterianos/farmacologia , Complexo Burkholderia cepacia/classificação , Complexo Burkholderia cepacia/efeitos dos fármacos , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano/genética , Filogenia , Pseudomonas/classificação , Pseudomonas/efeitos dos fármacos
16.
Microb Genom ; 2(9): e000086, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28785418

RESUMO

The increasing availability and decreasing cost of high-throughput sequencing has transformed academic medical microbiology, delivering an explosion in available genomes while also driving advances in bioinformatics. However, many microbiologists are unable to exploit the resulting large genomics datasets because they do not have access to relevant computational resources and to an appropriate bioinformatics infrastructure. Here, we present the Cloud Infrastructure for Microbial Bioinformatics (CLIMB) facility, a shared computing infrastructure that has been designed from the ground up to provide an environment where microbiologists can share and reuse methods and data.


Assuntos
Computação em Nuvem , Biologia Computacional/métodos , Internet , Técnicas Microbiológicas/métodos , Software , Genoma Microbiano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala
17.
J Clin Microbiol ; 53(7): 2022-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878338

RESUMO

Respiratory infection in cystic fibrosis (CF) is polymicrobial, but standard sputum microbiology does not account for the lung microbiome or detect changes in microbial diversity associated with disease. As a clinically applicable CF microbiome surveillance scheme, total sputum nucleic acids isolated by a standard high-throughput robotic method for accredited viral diagnosis were profiled for bacterial diversity using ribosomal intergenic spacer analysis (RISA) PCR. Conventional culture and RISA were performed on 200 paired sputum samples from 93 CF adults; pyrosequencing of the 16S rRNA gene was applied to 59 patients to systematically determine bacterial diversity. Compared to the microbiology data, RISA profiles clustered into two groups: the emerging nonfermenting Gram-negative organisms (eNFGN) and Pseudomonas groups. Patients who were culture positive for Burkholderia, Achromobacter, Stenotrophomonas, and Ralstonia clustered within the eNFGN group. Pseudomonas group RISA profiles were associated with Pseudomonas aeruginosa culture-positive patients. Sequence analysis confirmed the abundance of eNFGN genera and Pseudomonas within these respective groups. Low bacterial diversity was associated with severe lung disease (P < 0.001) and the presence of Burkholderia (P < 0.001). An absence of Streptococcus (P < 0.05) occurred in individuals with lung function in the lowest quartile. In summary, nucleic acids isolated from CF sputum can serve as a single template for both molecular virology and bacteriology, with a RISA PCR rapidly detecting the presence of dominant eNFGN pathogens or P. aeruginosa missed by culture (11% of cases). We provide guidance for how this straightforward CF microbiota profiling scheme may be adopted by clinical laboratories.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Fibrose Cística/complicações , Técnicas de Diagnóstico Molecular/métodos , Pneumonia Bacteriana/diagnóstico , Escarro/microbiologia , Adulto , Automação Laboratorial/métodos , Bactérias/classificação , Bactérias/genética , Feminino , Humanos , Masculino , Pneumonia Bacteriana/microbiologia , Pneumonia Viral/diagnóstico , Pneumonia Viral/microbiologia , Manejo de Espécimes/métodos , Escarro/virologia , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação , Adulto Jovem
18.
Integr Med (Encinitas) ; 14(1): 25-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26770128

RESUMO

Part 1 of this review discussed the connection between the human gut microbiota and health. Manipulation of the intestinal microbiota holds promise as a prospective therapy for gut dysbiosis, ameliorating symptoms of gastrointestinal and systemic diseases and restoring health. The concept of probiotics has existed for more than 100 y, and modern research methods have established sound scientific support for the perceived benefits of probiotic bacteria, which mainly include Lactobacillus and Bifidobacterium genera. On the basis of these evidence-based functional approaches, dietary interventions that supplement the normal diet with probiotics or prebiotics are now considered as potentially viable alternatives or adjuncts to the use of steroids, immunosuppressants, and/or surgical interventions. Studies investigating the impact on gastrointestinal disorders, such as diarrhea, inflammatory bowel disease (IBD), irritable bowel syndrome (IBS); and systemic metabolic diseases, such as type 2 diabetes and obesity, in response to the use of probiotics and prebiotics are reviewed. Further, fecal microbial transplantation (FMT) is discussed as an exciting development in the treatment of gut dysbiosis using microbes.

19.
Sci Rep ; 4: 7202, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25425319

RESUMO

Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.


Assuntos
Mapeamento Cromossômico/métodos , Laticínios/microbiologia , Genoma Bacteriano/genética , Instabilidade Genômica/genética , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/isolamento & purificação , Sequência de Bases , Microbiologia de Alimentos , Lactobacillus acidophilus/classificação , Dados de Sequência Molecular , Probióticos/análise , Probióticos/classificação
20.
Integr Med (Encinitas) ; 13(6): 17-22, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26770121

RESUMO

The bacterial cells harbored within the human gastrointestinal tract (GIT) outnumber the host's cells by a factor of 10 and the genes encoded by the bacteria resident within the GIT outnumber their host's genes by more than 100 times. These human digestive-tract associated microbes are referred to as the gut microbiome. The human gut microbiome and its role in both health and disease has been the subject of extensive research, establishing its involvement in human metabolism, nutrition, physiology, and immune function. Imbalance of the normal gut microbiota have been linked with gastrointestinal conditions such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), and wider systemic manifestations of disease such as obesity, type 2 diabetes, and atopy. In the first part of this review, we evaluate our evolving knowledge of the development, complexity, and functionality of the healthy gut microbiota, and the ways in which the microbial community is perturbed in dysbiotic disease states; the second part of this review covers the role of interventions that have been shown to modulate and stabilize the gut microbiota and also to restore it to its healthy composition from the dysbiotic states seen in IBS, IBD, obesity, type 2 diabetes, and atopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA