Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 101: 660-673, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029360

RESUMO

Since large bone defects cannot be healed by the body itself, continuous effort is put into the development of 3D scaffolds for bone tissue engineering. One method to fabricate such scaffolds is selective laser sintering (SLS). However, there is a lack of solvent-free prepared microparticles suitable for SLS. Hence, the aim of this study was to develop a solvent-free polylactide/calcium carbonate composite powder with tailored material properties for SLS. Four composite powders with a composition of approximately 75 wt% polylactide (PLLA as well as PDLLA) and 25 wt% calcium carbonate (calcite) were prepared by a milling process based on GMP standards. Four different grades of polylactide were chosen to cover a broad inherent viscosity range of 1.0-3.6 dl/g. The composite material with the lowest inherent viscosity (1.0 dl/g) showed the best processability by SLS. This was caused by the small polymer particle diameter (50 µm) and the small zero-shear melt viscosity (400 Pa·s), which led to fast sintering. The SLS process parameters were developed to achieve low micro-porosity (approx. 2%) and low polymer degradation (no measurable decrease of the inherent viscosity). A biaxial bending strength of up to 75 MPa was achieved. Cell culture assays indicated good viability of MG-63 osteoblast-like cells on the SLS specimens. Finally, the manufacture of 3D scaffolds with interconnected pore structure was demonstrated. After proving the biocompatibility of the material, the developed scaffolds could have great potential to be used as patient-specific bone replacement implants.


Assuntos
Materiais Biocompatíveis/química , Carbonato de Cálcio/química , Poliésteres/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/efeitos adversos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Viscosidade
2.
J Mech Behav Biomed Mater ; 87: 267-278, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30098516

RESUMO

Complex 3D scaffolds with interconnected pores are a promising tool for bone regeneration. Such 3D scaffolds can be manufactured by selective laser sintering (SLS) from biodegradable composite powders. However, the mechanical strength of these scaffolds is often too low for medical application. We propose that the mechanical strength of laser-sintered scaffolds can be improved through composite powders with tailored properties (e.g., suitable powder particle size and melt viscosity for SLS). To prove this, two batches of a poly(D,L-lactide) (PDLLA)/ß-tricalcium phosphate (ß-TCP) composite powder with 50 wt% PDLLA and 50 wt% ß-TCP were synthesized. The two batches differed in polymer particle size, filler particle size, and polymer molecular weight. Both batches were processed with identical SLS process parameters to study the extent to which the material properties influence how well a PDLLA/ß-TCP (50/50) composite can be processed with SLS. In the SLS process, batch 2 showed improved melting behavior due to its smaller polymer particle size (approx. 35 µm vs. 50 µm) and its lower zero-shear melt viscosity (5800 Pa∙s vs. 17,900 Pa∙s). The better melting behavior of batch 2 led to SLS test specimens with lower porosity compared to batch 1. In consequence, the batch 2 specimens exhibited a larger biaxial bending strength (62 MPa) than the batch 1 specimens did (23 MPa). We conclude that a tailored composite powder with optimized polymer particle size, filler particle size, and polymer molecular weight can increase the achievable mechanical strength of laser-sintered scaffolds.


Assuntos
Fosfatos de Cálcio/química , Lasers , Fenômenos Mecânicos , Poliésteres/química , Peso Molecular , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA