RESUMO
Since the birth of the first baby by in vitro fertilization in 1978, more than 9 million children have been born worldwide using medically assisted reproductive treatments. Fertilization naturally takes place in the maternal oviduct where unique physiological conditions enable the early healthy development of the embryo. During this dynamic period of early development major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Increasingly, over the past 20 years concerns relating to the increased incidence of epigenetic anomalies in general, and genomic-imprinting disorders in particular, have been raised following assisted reproduction technology (ART) treatments. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period and non-physiological conditions such as ovarian stimulation, in vitro fertilization and embryo culture, as well as cryopreservation procedure, might have the potential to independently or collectively contribute to epigenetic dysregulation. Therefore, this narrative review offers a critical reappraisal of the evidence relating to the association between embryo cryopreservation and potential epigenetic regulation and the consequences on gene expression together with long-term consequences for offspring health and wellbeing. Current literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, in terms of osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, it is therefore, critical to have a more comprehensive understanding and recognition of potential unanticipated iatrogenic-induced perturbations of epigenetic modifications that may or may not be a consequence of vitrification.
Assuntos
Epigênese Genética , Técnicas de Reprodução Assistida , Criança , Humanos , Técnicas de Reprodução Assistida/efeitos adversos , Criopreservação/métodos , Fertilização in vitro , Impressão GenômicaRESUMO
Assisted reproductive technology may influence epigenetic signature as the procedures coincide with the extensive epigenetic modification occurring from fertilization to embryo implantation. However, it is still unclear to what extent ART alters the embryo epigenome. In vivo fertilization occurs in the fallopian tube, where a specific and natural environment enables the embryo's healthy development. During this dynamic period, major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Over the past decade, concerns relating to the raised incidence of epigenetic anomalies and imprinting following ART have been raised by several authors. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period; therefore, unphysiological conditions, including ovarian stimulation, in vitro fertilization, embryo culture, cryopreservation of gametes and embryos, parental lifestyle, and underlying infertility, have the potential to contribute to epigenetic dysregulation independently or collectively. This review critically appraises the evidence relating to the association between ART and genetic and epigenetic modifications that may be transmitted to the offspring.