Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 10(3): 938-950, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329933

RESUMO

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.


Assuntos
Fluconazol , Trypanosoma cruzi , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Metalocenos , Antiparasitários/farmacologia , Caenorhabditis elegans , Inibidores de 14-alfa Desmetilase/química , Trypanosoma cruzi/química
2.
J Med Chem ; 66(23): 15867-15882, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38009931

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Fluconazol , Micoses/tratamento farmacológico
3.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425761

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY: Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.

4.
J Med Microbiol ; 72(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36748419

RESUMO

Introduction. One correlate of immunity for coronavirus disease 2019 (COVID-19) is the laboratory detection of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies. These tests are widely implemented for clinical, public health, or research uses.Hypothesis/Gap Statement. Antibody responses by all classes of immunoglobulins may form from infection and vaccination, but few studies have performed direct head-to-head comparisons between these groups.Aim. The objective of this study was to evaluate the serological responses in natural SARS-CoV-2 infection and mRNA-based vaccination across multiple immunoglobulin classes and a surrogate neutralizing antibody (NAb) assay.Methodology. A suite of enzyme-linked immunosorbent assays (ELISAs) was used to qualitatively assess IgA, IgM and IgG positivity and neutralizing per cent signal inhibition of sera from RT-PCR-confirmed SARS-CoV-2-infected patients, COVID-19-immunized individuals ≥2 weeks after a second dose of mRNA vaccine and a set of pre-pandemic negative samples.Results. For confirmed SARS-CoV-2 infections, seroconversion of IgA, IgM, IgG and NAb increased by week after symptom onset, with positivity reaching 100 % after the third week for every immunoglobulin class. Vaccinated individuals demonstrated 100 % IgG positivity and high per cent signal inhibition by NAb, comparable to natural infection. High specificity, ranging from 96.7-98.9 %, was observed for each assay from a set of pre-pandemic COVID-19-negative samples.Conclusion. We make use of a comprehensive and readily adoptable suite of serological assays to provide data on the humoral immune response to SARS-CoV-2 infection and vaccination. We found that infection and vaccination both elicit robust IgG, IgM, IgA and neutralizing antibody responses.


Assuntos
Formação de Anticorpos , COVID-19 , Humanos , Anticorpos Neutralizantes , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Mensageiro , Vacinação , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , Anticorpos Antivirais
5.
Pathogens ; 11(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745561

RESUMO

The current treatments for lymphatic filariasis and onchocerciasis do not effectively kill the adult parasitic nematodes, allowing these chronic and debilitating diseases to persist in millions of people. Thus, the discovery of new drugs with macrofilaricidal potential to treat these filarial diseases is critical. To facilitate this need, we first investigated the effects of three aspartyl protease inhibitors (APIs) that are FDA-approved as HIV antiretroviral drugs on the adult filarial nematode, Brugia malayi and the endosymbiotic bacteria, Wolbachia. From the three hits, nelfinavir had the best potency with an IC50 value of 7.78 µM, followed by ritonavir and lopinavir with IC50 values of 14.3 µM and 16.9 µM, respectively. The three APIs have a direct effect on killing adult B. malayi after 6 days of exposure in vitro and did not affect the Wolbachia titers. Sequence conservation and stage-specific gene expression analysis identified Bm8660 as the most likely primary aspartic protease target for these drug(s). Immunolocalization using antibodies raised against the Bm8660 ortholog of Onchocerca volvulus showed it is strongly expressed in female B. malayi, especially in metabolically active tissues such as lateral and dorsal/ventral chords, hypodermis, and uterus tissue. Global transcriptional response analysis using adult female B. pahangi treated with APIs identified four additional aspartic proteases differentially regulated by the three effective drugs, as well as significant enrichment of various pathways including ubiquitin mediated proteolysis, protein kinases, and MAPK/AMPK/FoxO signaling. In vitro testing against the adult gastro-intestinal nematode Trichuris muris suggested broad-spectrum potential for these APIs. This study suggests that APIs may serve as new leads to be further explored for drug discovery to treat parasitic nematode infections.

6.
Redox Biol ; 51: 102278, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276442

RESUMO

Enzymes in the thiol redox systems of microbial pathogens are promising targets for drug development. In this study we characterized the thioredoxin reductase (TrxR) selenoproteins from Brugia malayi and Onchocerca volvulus, filarial nematode parasites and causative agents of lymphatic filariasis and onchocerciasis, respectively. The two filarial enzymes showed similar turnover numbers and affinities for different thioredoxin (Trx) proteins, but with a clear preference for the autologous Trx. Human TrxR1 (hTrxR1) had a high and similar specific activity versus the human and filarial Trxs, suggesting that, in vivo, hTrxR1 could possibly be the reducing agent of parasite Trxs once they are released into the host. Both filarial TrxRs were efficiently inhibited by auranofin and by a recently described inhibitor of human TrxR1 (TRi-1), but not as efficiently by the alternative compound TRi-2. The enzyme from B. malayi was structurally characterized also in complex with NADPH and auranofin, producing the first crystallographic structure of a nematode TrxR. The protein represents an unusual fusion of a mammalian-type TrxR protein architecture with an N-terminal glutaredoxin-like (Grx) domain lacking typical Grx motifs. Unlike thioredoxin glutathione reductases (TGRs) found in platyhelminths and mammals, which are also Grx-TrxR domain fusion proteins, the TrxRs from the filarial nematodes lacked glutathione disulfide reductase and Grx activities. The structural determinations revealed that the Grx domain of TrxR from B. malayi contains a cysteine (C22), conserved in TrxRs from clade IIIc nematodes, that directly interacts with the C-terminal cysteine-selenocysteine motif of the homo-dimeric subunit. Interestingly, despite this finding we found that altering C22 by mutation to serine did not affect enzyme catalysis. Thus, although the function of the Grx domain in these filarial TrxRs remains to be determined, the results obtained provide insights on key properties of this important family of selenoprotein flavoenzymes that are potential drug targets for treatment of filariasis.


Assuntos
Brugia Malayi , Onchocerca volvulus , Parasitos , Animais , Auranofina/farmacologia , Brugia Malayi/metabolismo , Cisteína/metabolismo , Humanos , Mamíferos/metabolismo , Onchocerca volvulus/genética , Onchocerca volvulus/metabolismo , Oxirredução , Parasitos/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
7.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215301

RESUMO

Onchocerciasis and lymphatic filariasis are neglected tropical diseases caused by infection with filarial worms. Annual or biannual mass drug administration with microfilaricidal drugs that kill the microfilarial stages of the parasites has helped reduce infection rates and thus prevent transmission of both infections. However, success depends on high population coverage that is maintained for the duration of the adult worm's lifespan. Given that these filarial worms can live up to 14 years in their human hosts, a macrofilaricidal drug would vastly accelerate elimination efforts. Here, we have evaluated the repurposed drug pyrvinium pamoate as well as newly synthesized analogs of pyrvinium for their efficacy against filarial worms in vitro and in vivo. We found that pyrvinium pamoate, tetrahydropyrvinium and one of the analogs were highly potent in inhibiting worms in in vitro whole-worm screening assays, and that all three compounds reduced female worm fecundity and inhibited embryogenesis in the Brugia pahangi-gerbil in vivo model of infection.

8.
J Clin Microbiol ; 59(6)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33762363

RESUMO

Confirmed diagnosis of chronic Chagas disease (CD) requires positive results by two different IgG serology tests. Variable sensitivity has been reported among tests and in different geographic regions. Inadequate specificity presents a particular challenge in low-prevalence settings such as the United States. This study provides a direct comparison of the latest-generation IgG serology assays with four previously assessed FDA-cleared tests. Seven hundred ten blood donor plasma specimens were evaluated by Wiener Lisado and Wiener v.4.0 enzyme-linked immunosorbent assays (ELISAs) and Abbott PRISM Chagas chemiluminescent assay (ChLIA). Sensitivity and specificity were assessed relative to infection status as determined by the original blood donation testing algorithm. All three latest-generation assays demonstrated 100% specificity (95% confidence interval [CI], 98.6 to 100.0). Wiener Lisado, Wiener v.4.0, and Abbott PRISM had sensitivities of 97.1% (95% CI, 95.1 to 98.4), 98.9% (95% CI, 97.4 to 99.6), and 95.5% (95% CI, 93.2 to 97.3), respectively. As with previously evaluated FDA-cleared tests, all three assays had the highest reactivity and sensitivity in samples from donors born in South America and lowest reactivity and sensitivity in specimens from those born in Mexico, with intermediate results in specimens from Central American donors. Wiener v.4.0 had the highest diagnostic sensitivity in all comparisons. Our findings suggest that the latest-generation CD serology tests could improve diagnostic sensitivity without affecting specificity.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Anticorpos Antiprotozoários , Doença de Chagas/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , México , Sensibilidade e Especificidade , Testes Sorológicos , América do Sul
9.
Parasit Vectors ; 14(1): 118, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627171

RESUMO

BACKGROUND: Onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) are two human neglected tropical diseases that cause major disabilities. Mass administration of drugs targeting the microfilarial stage has reduced transmission and eliminated these diseases in several countries but a macrofilaricidal drug that kills or sterilizes the adult worms is critically needed to eradicate the diseases. The causative agents of onchocerciasis and lymphatic filariasis are filarial worms that harbor the endosymbiotic bacterium Wolbachia. Because filarial worms depend on Wolbachia for reproduction and survival, drugs targeting Wolbachia hold great promise as a means to eliminate these diseases. METHODS: To better understand the relationship between Wolbachia and its worm host, adult Brugia pahangi were exposed to varying concentrations of doxycycline, minocycline, tetracycline and rifampicin in vitro and assessed for Wolbachia numbers and worm motility. Worm motility was monitored using the Worminator system, and Wolbachia titers were assessed by qPCR of the single copy gene wsp from Wolbachia and gst from Brugia to calculate IC50s and in time course experiments. Confocal microscopy was also used to quantify Wolbachia located at the distal tip region of worm ovaries to assess the effects of antibiotic treatment in this region of the worm where Wolbachia are transmitted vertically to the microfilarial stage. RESULTS: Worms treated with higher concentrations of antibiotics had higher Wolbachia titers, i.e. as antibiotic concentrations increased there was a corresponding increase in Wolbachia titers. As the concentration of antibiotic increased, worms stopped moving and never recovered despite maintaining Wolbachia titers comparable to controls. Thus, worms were rendered moribund by the higher concentrations of antibiotics but Wolbachia persisted suggesting that these antibiotics may act directly on the worms at high concentration. Surprisingly, in contrast to these results, antibiotics given at low concentrations reduced Wolbachia titers. CONCLUSION: Wolbachia in B. pahangi display a counterintuitive dose response known as the "Eagle effect." This effect in Wolbachia suggests a common underlying mechanism that allows diverse bacterial and fungal species to persist despite exposure to high concentrations of antimicrobial compounds. To our knowledge this is the first report of this phenomenon occurring in an intracellular endosymbiont, Wolbachia, in its filarial host.


Assuntos
Brugia Malayi/fisiologia , Microfilárias/microbiologia , Onchocerca/fisiologia , Simbiose , Wolbachia/fisiologia , Animais , Antibacterianos/farmacologia , Brugia Malayi/efeitos dos fármacos , Brugia Malayi/microbiologia , Doxiciclina/farmacologia , Feminino , Masculino , Microfilárias/efeitos dos fármacos , Microfilárias/fisiologia , Onchocerca/efeitos dos fármacos , Onchocerca/microbiologia , Simbiose/efeitos dos fármacos , Wolbachia/efeitos dos fármacos
10.
PLoS Negl Trop Dis ; 15(2): e0009064, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600426

RESUMO

Several issues have been identified with the current programs for the elimination of onchocerciasis that target only transmission by using mass drug administration (MDA) of the drug ivermectin. Alternative and/or complementary treatment regimens as part of a more comprehensive strategy to eliminate onchocerciasis are needed. We posit that the addition of "prophylactic" drugs or therapeutic drugs that can be utilized in a prophylactic strategy to the toolbox of present microfilaricidal drugs and/or future macrofilaricidal treatment regimens will not only improve the chances of meeting the elimination goals but may hasten the time to elimination and also will support achieving a sustained elimination of onchocerciasis. These "prophylactic" drugs will target the infective third- (L3) and fourth-stage (L4) larvae of Onchocerca volvulus and consequently prevent the establishment of new infections not only in uninfected individuals but also in already infected individuals and thus reduce the overall adult worm burden and transmission. Importantly, an effective prophylactic treatment regimen can utilize drugs that are already part of the onchocerciasis elimination program (ivermectin), those being considered for MDA (moxidectin), and/or the potential macrofilaricidal drugs (oxfendazole and emodepside) currently under clinical development. Prophylaxis of onchocerciasis is not a new concept. We present new data showing that these drugs can inhibit L3 molting and/or inhibit motility of L4 at IC50 and IC90 that are covered by the concentration of these drugs in plasma based on the corresponding pharmacological profiles obtained in human clinical trials when these drugs were tested using various doses for the therapeutic treatments of various helminth infections.


Assuntos
Filaricidas/farmacologia , Leucócitos Mononucleares/parasitologia , Onchocerca volvulus/efeitos dos fármacos , Animais , Benzimidazóis/farmacologia , Depsipeptídeos/farmacologia , Humanos , Ivermectina/farmacologia , Larva/efeitos dos fármacos , Macrolídeos/farmacologia , Onchocerca volvulus/crescimento & desenvolvimento , Oncocercose/tratamento farmacológico , Oncocercose/prevenção & controle
11.
Pathogens ; 10(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466870

RESUMO

Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adult Brugia pahangi and prioritized the hits for further studies by integrating those results with a computational prioritization of drugs and associated targets. This resulted in the identification of 18 hits with anti-macrofilaricidal activity, of which two classes, azoles and aspartic protease inhibitors, were further expanded upon. Follow up screening against Onchocerca spp. (adult Onchocerca ochengi and pre-adult O. volvulus) confirmed activity for 13 drugs (the majority having IC50 < 10 µM), and a counter screen of a subset against L. loa microfilariae showed the potential to identify selective drugs that prevent adverse events when co-infected individuals are treated. Stage specific activity was also observed. Many of these drugs are amenable to structural optimization, and also have known canonical targets, making them promising candidates for further optimization that can lead to identifying and characterizing novel anti-macrofilarial drugs.

12.
Molecules ; 25(21)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139647

RESUMO

Neglected parasitic diseases remain a major public health issue worldwide, especially in tropical and subtropical areas. Human parasite diversity is very large, ranging from protozoa to worms. In most cases, more effective and new drugs are urgently needed. Previous studies indicated that the gold(I) drug auranofin (Ridaura®) is effective against several parasites. Among new gold(I) complexes, the phosphole-containing gold(I) complex {1-phenyl-2,5-di(2-pyridyl)phosphole}AuCl (abbreviated as GoPI) is an irreversible inhibitor of both purified human glutathione and thioredoxin reductases. GoPI-sugar is a novel 1-thio-ß-d-glucopyranose 2,3,4,6-tetraacetato-S-derivative that is a chimera of the structures of GoPI and auranofin, designed to improve stability and bioavailability of GoPI. These metal-ligand complexes are of particular interest because of their combined abilities to irreversibly target the essential dithiol/selenol catalytic pair of selenium-dependent thioredoxin reductase activity, and to kill cells from breast and brain tumors. In this work, screening of various parasites-protozoans, trematodes, and nematodes-was undertaken to determine the in vitro killing activity of GoPI-sugar compared to auranofin. GoPI-sugar was found to efficiently kill intramacrophagic Leishmania donovani amastigotes and adult filarial and trematode worms.


Assuntos
Anti-Helmínticos , Antineoplásicos , Antiprotozoários , Auranofina , Complexos de Coordenação , Ouro , Helmintíase/tratamento farmacológico , Neoplasias/tratamento farmacológico , Infecções por Protozoários/tratamento farmacológico , Animais , Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Auranofina/química , Auranofina/farmacologia , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Avaliação de Medicamentos , Ouro/química , Ouro/farmacologia , Helmintíase/metabolismo , Helmintíase/patologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Infecções por Protozoários/metabolismo , Infecções por Protozoários/patologia
13.
PLoS Pathog ; 16(7): e1008623, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32639986

RESUMO

Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.


Assuntos
Brugia pahangi/microbiologia , Filariose/microbiologia , Filaricidas/farmacologia , Rifampina/farmacologia , Wolbachia/efeitos dos fármacos , Animais , Feminino , Gerbillinae
14.
PLoS Negl Trop Dis ; 14(5): e0007942, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453724

RESUMO

Efforts to identify new drugs for therapeutic and preventive treatments against parasitic nematodes have gained increasing interest with expanding pathogen omics databases and drug databases from which new anthelmintic compounds might be identified. Here, a novel approach focused on integrating a pan-Nematoda multi-omics data targeted to a specific nematode organ system (the intestinal tract) with evidence-based filtering and chemogenomic screening was undertaken. Based on de novo computational target prioritization of the 3,564 conserved intestine genes in A. suum, exocytosis was identified as a high priority pathway, and predicted inhibitors of exocytosis were tested using the large roundworm (Ascaris suum larval stages), a filarial worm (Brugia pahangi adult and L3), a whipworm (Trichuris muris adult), and the non-parasitic nematode Caenorhabditis elegans. 10 of 13 inhibitors were found to cause rapid immotility in A. suum L3 larvae, and five inhibitors were effective against the three phylogenetically diverse parasitic nematode species, indicating potential for a broad spectrum anthelmintics. Several distinct pathologic phenotypes were resolved related to molting, motility, or intestinal cell and tissue damage using conventional and novel histologic methods. Pathologic profiles characteristic for each inhibitor will guide future research to uncover mechanisms of the anthelmintic effects and improve on drug designs. This progress firmly validates the focus on intestinal cell biology as a useful resource to develop novel anthelmintic strategies.


Assuntos
Anti-Helmínticos/farmacologia , Nematoides/efeitos dos fármacos , Animais , Células Cultivadas , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Intestinos/citologia , Intestinos/efeitos dos fármacos , Larva/efeitos dos fármacos
15.
Artigo em Inglês | MEDLINE | ID: mdl-31869759

RESUMO

The quinazolines CBR417 and CBR490 were previously shown to be potent anti-wolbachials that deplete Wolbachia endosymbionts of filarial nematodes and present promising pre-clinical candidates for human filarial diseases such as onchocerciasis. In the present study we tested both candidates in two models of chronic filarial infection, namely the Litomosoides sigmodontis and Brugia pahangi jird model and assessed their long-term effect on Wolbachia depletion, microfilariae counts and filarial embryogenesis 16-18 weeks after treatment initiation (wpt). Once per day (QD) oral treatment with CBR417 (50 mg/kg) for 4 days or twice per day (BID) with CBR490 (25 mg/kg) for 7 days during patent L. sigmodontis infection reduced the Wolbachia load by >99% and completely cleared peripheral microfilaremia from 10-14 wpt. Similarly, 7 days of QD treatments (40 mg/kg) with CBR417 or CBR490 cleared >99% of Wolbachia from B. pahangi and reduced peritoneal microfilariae counts by 93% in the case of CBR417 treatment. Transmission electron microscopy analysis indicated intensive damage to the B. pahangi ovaries following CBR417 treatment and in accordance filarial embryogenesis was inhibited in both models after CBR417 or CBR490 treatment. Suboptimal treatment regimens of CBR417 or CBR490 did not lead to a maintained reduction of the microfilariae and Wolbachia load. In conclusion, CBR417 or CBR490 are pre-clinical candidates for filarial diseases, which achieve long-term clearance of Wolbachia endosymbionts of filarial nematodes, inhibit filarial embryogenesis and clear microfilaremia with treatments as short as 7 days.


Assuntos
Antibacterianos/uso terapêutico , Filariose/tratamento farmacológico , Oncocercose/tratamento farmacológico , Quinazolinas/uso terapêutico , Wolbachia/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Brugia pahangi/efeitos dos fármacos , Feminino , Filariose/microbiologia , Filarioidea/efeitos dos fármacos , Gerbillinae/microbiologia , Gerbillinae/parasitologia , Microfilárias/efeitos dos fármacos , Quinazolinas/administração & dosagem , Simbiose/efeitos dos fármacos
16.
ACS Infect Dis ; 6(2): 180-185, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31876143

RESUMO

The optimization of a series of benzimidazole-benzoxaborole hybrid molecules linked via a ketone that exhibit good activity against Onchocerca volvulus, a filarial nematode responsible for the disease onchocerciasis, also known as river blindness, is described. The lead identified in this series, 21 (AN15470), was found to have acceptable pharmacokinetic properties to enable an evaluation following oral dosing in an animal model of onchocerciasis. Compound 21was effective in killing worms implanted in Mongolian gerbils when dosed orally as a suspension at 100 mg/kg/day for 14 days but not when dosed orally at 100 mg/kg/day for 7 days.


Assuntos
Benzimidazóis/uso terapêutico , Compostos de Boro/uso terapêutico , Cetonas/química , Oncocercose Ocular/tratamento farmacológico , Administração Oral , Animais , Benzimidazóis/farmacocinética , Compostos de Boro/farmacocinética , Modelos Animais de Doenças , Feminino , Filaricidas/farmacocinética , Filaricidas/uso terapêutico , Gerbillinae , Masculino
17.
ACS Infect Dis ; 6(2): 173-179, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31876154

RESUMO

A series of benzimidazole-benzoxaborole hybrid molecules linked via an amide linker are described that exhibit good in vitro activity against Onchocerca volvulus, a filarial nematode responsible for the disease onchocerciasis, also known as river blindness. The lead identified in this series, 8a (AN8799), was found to have acceptable pharmacokinetic properties to enable evaluation in animal models of human filariasis. Compound 8a was effective in killing Brugia malayi, B. pahangi, and Litomosoides sigmodontis worms present in Mongolian gerbils when dosed subcutaneously as a suspension at 100 mg/kg/day for 14 days but not when dosed orally at 100 mg/kg/day for 28 days. The measurement of plasma levels of 8a at the end of the dosing period and at the time of sacrifice revealed an interesting dependence of activity on the extended exposure for both 8a and the positive control, flubendazole.


Assuntos
Benzimidazóis/uso terapêutico , Compostos de Boro/uso terapêutico , Brugia/efeitos dos fármacos , Oncocercose/tratamento farmacológico , Amidas , Animais , Benzimidazóis/farmacocinética , Compostos de Boro/farmacocinética , Feminino , Filaricidas/farmacocinética , Filaricidas/uso terapêutico , Gerbillinae , Masculino , Onchocerca volvulus/efeitos dos fármacos
18.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31511333

RESUMO

Chagas disease affects an estimated 300,000 individuals in the United States. Diagnosis in the chronic phase requires positive results from two different IgG serological tests. Three enzyme-linked immunosorbent assays (ELISAs) (Hemagen, Ortho, and Wiener) and one rapid test (InBios) are FDA cleared, but comparative data in U.S. populations are sparse. We evaluated 500 seropositive and 300 seronegative blood donor plasma samples. Country of birth was known for 255 seropositive specimens, which were grouped into regions as follows: Mexico (n = 94), Central America (n = 88), and South America (n = 73). Specimens were tested by the four FDA-cleared IgG serological assays. Test performance was evaluated by two comparators and latent class analysis. InBios had the highest sensitivity (97.4% to 99.3%) but the lowest specificity (87.5% to 92.3%). Hemagen had the lowest sensitivity (88.0% to 92.0%) but high specificity (99.0% to 100.0%). The level of sensitivity was intermediate for Ortho (92.4% to 96.5%) and Wiener (94.0% to 97.1%); both had high specificity (98.8% to 100.0% and 96.7% to 99.3%, respectively). The levels of antibody reactivity and clinical sensitivity were lowest in donors from Mexico, intermediate in those from Central America, and highest in those from South America. Our findings provide an initial evidence base to improve laboratory diagnosis of Chagas disease in the United States. The best current testing algorithm would employ a high-sensitivity screening test followed by a high-specificity confirmatory test.


Assuntos
Anticorpos Antiprotozoários/sangue , Doadores de Sangue , Doença de Chagas/diagnóstico , Testes Sorológicos/métodos , América Central , Feminino , Humanos , Masculino , Sensibilidade e Especificidade , América do Sul
19.
Sci Rep ; 9(1): 9085, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-31235822

RESUMO

Targeting chokepoint enzymes in metabolic pathways has led to new drugs for cancers, autoimmune disorders and infectious diseases. This is also a cornerstone approach for discovery and development of anthelmintics against nematode and flatworm parasites. Here, we performed omics-driven knowledge-based identification of chokepoint enzymes as anthelmintic targets. We prioritized 10 of 186 phylogenetically conserved chokepoint enzymes and undertook a target class repurposing approach to test and identify new small molecules with broad spectrum anthelmintic activity. First, we identified and tested 94 commercially available compounds using an in vitro phenotypic assay, and discovered 11 hits that inhibited nematode motility. Based on these findings, we performed chemogenomic screening and tested 32 additional compounds, identifying 6 more active hits. Overall, 6 intestinal (single-species), 5 potential pan-intestinal (whipworm and hookworm) and 6 pan-Phylum Nematoda (intestinal and filarial species) small molecule inhibitors were identified, including multiple azoles, Tadalafil and Torin-1. The active hit compounds targeted three different target classes in humans, which are involved in various pathways, including carbohydrate, amino acid and nucleotide metabolism. Last, using representative inhibitors from each target class, we demonstrated in vivo efficacy characterized by negative effects on parasite fecundity in hamsters infected with hookworms.


Assuntos
Anti-Helmínticos/farmacologia , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/metabolismo , Cricetinae , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Nematoides/efeitos dos fármacos , Fenótipo , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Relação Estrutura-Atividade
20.
PLoS Negl Trop Dis ; 13(1): e0006787, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650084

RESUMO

River blindness and lymphatic filariasis are two filarial diseases that globally affect millions of people mostly in impoverished countries. Current mass drug administration programs rely on drugs that primarily target the microfilariae, which are released from adult female worms. The female worms can live for several years, releasing millions of microfilariae throughout the course of infection. Thus, to stop transmission of infection and shorten the time to elimination of these diseases, a safe and effective drug that kills the adult stage is needed. The benzimidazole anthelmintic flubendazole (FBZ) is 100% efficacious as a macrofilaricide in experimental filarial rodent models but it must be administered subcutaneously (SC) due to its low oral bioavailability. Studies were undertaken to assess the efficacy of a new oral amorphous solid dispersion (ASD) formulation of FBZ on Brugia pahangi infected jirds (Meriones unguiculatus) and compare it to a single or multiple doses of FBZ given subcutaneously. Results showed that worm burden was not significantly decreased in animals given oral doses of ASD FBZ (0.2-15 mg/kg). Regardless, doses as low as 1.5 mg/kg caused extensive ultrastructural damage to developing embryos and microfilariae (mf). SC injections of FBZ in suspension (10 mg/kg) given for 5 days however, eliminated all worms in all animals, and a single SC injection reduced worm burden by 63% compared to the control group. In summary, oral doses of ASD formulated FBZ did not significantly reduce total worm burden but longer treatments, extended takedown times or a second dosing regimen, may decrease female fecundity and the number of mf shed by female worms.


Assuntos
Brugia pahangi/efeitos dos fármacos , Filariose , Filaricidas/uso terapêutico , Mebendazol/análogos & derivados , Microfilárias/efeitos dos fármacos , Administração Oral , Animais , Modelos Animais de Doenças , Feminino , Filariose/tratamento farmacológico , Filariose/prevenção & controle , Filariose/transmissão , Filaricidas/administração & dosagem , Gerbillinae/parasitologia , Injeções Subcutâneas , Masculino , Mebendazol/administração & dosagem , Mebendazol/uso terapêutico , Carga Parasitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA