Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(12): eaay3050, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32219159

RESUMO

Protecting quantum information from errors is essential for large-scale quantum computation. Quantum error correction (QEC) encodes information in entangled states of many qubits and performs parity measurements to identify errors without destroying the encoded information. However, traditional QEC cannot handle leakage from the qubit computational space. Leakage affects leading experimental platforms, based on trapped ions and superconducting circuits, which use effective qubits within many-level physical systems. We investigate how two-transmon entangled states evolve under repeated parity measurements and demonstrate the use of hidden Markov models to detect leakage using only the record of parity measurement outcomes required for QEC. We show the stabilization of Bell states over up to 26 parity measurements by mitigating leakage using postselection and correcting qubit errors using Pauli-frame transformations. Our leakage identification method is computationally efficient and thus compatible with real-time leakage tracking and correction in larger quantum processors.

2.
Phys Rev Lett ; 123(12): 120502, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31633950

RESUMO

Conditional-phase (cz) gates in transmons can be realized by flux pulsing computational states towards resonance with noncomputational ones. We present a 40 ns cz gate based on a bipolar flux pulse suppressing leakage (0.1%) by interference and approaching the speed limit set by exchange coupling. This pulse harnesses a built-in echo to enhance fidelity (99.1%) and is robust to long-timescale distortion in the flux-control line, ensuring repeatability. Numerical simulations matching experiment show that fidelity is limited by high-frequency dephasing and leakage by short-timescale distortion.

3.
Nat Commun ; 4: 1913, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23715272

RESUMO

The tunnelling of quasiparticles across Josephson junctions in superconducting quantum circuits is an intrinsic decoherence mechanism for qubit degrees of freedom. Understanding the limits imposed by quasiparticle tunnelling on qubit relaxation and dephasing is of theoretical and experimental interest, particularly as improved understanding of extrinsic mechanisms has allowed crossing the 100 microsecond mark in transmon-type charge qubits. Here, by integrating recent developments in high-fidelity qubit readout and feedback control in circuit quantum electrodynamics, we transform a state-of-the-art transmon into its own real-time charge-parity detector. We directly measure the tunnelling of quasiparticles across the single junction and isolate the contribution of this tunnelling to qubit relaxation and dephasing, without reliance on theory. The millisecond timescales measured demonstrate that quasiparticle tunnelling does not presently bottleneck transmon qubit coherence, leaving room for yet another order of magnitude increase.

4.
Phys Rev Lett ; 109(24): 240502, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368293

RESUMO

We demonstrate feedback control of a superconducting transmon qubit using discrete, projective measurement and conditional coherent driving. Feedback realizes a fast and deterministic qubit reset to a target state with 2.4% error averaged over input superposition states, and allows concatenating experiments more than 10 times faster than by passive initialization. This closed-loop qubit control is necessary for measurement-based protocols such as quantum error correction and teleportation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA