Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 71(12): 879-886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38044140

RESUMO

In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (Mpro), which is an essential enzyme for viral replication, is a promising target. To date, the Mpro inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co., Ltd., respectively, as orally administrable drugs to treat coronavirus disease of 2019 (COVID-19). We have also developed several potent inhibitors of SARS-CoV-2 Mpro that include compounds 4, 5, TKB245 (6), and TKB248 (7), which possesses a 4-fluorobenzothiazole ketone moiety as a reactive warhead. In compounds 5 and TKB248 (7) we have also found that replacement of the P1-P2 amide of compounds 4 and TKB245 (6) with the corresponding thioamide improved their pharmacokinetics (PK) profile in mice. Here, we report the design, synthesis and evaluation of SARS-CoV-2 Mpro inhibitors with replacement of a digestible amide bond by surrogates (9-11, 33, and 34) and introduction of fluorine atoms in a metabolically reactive methyl group on the indole moiety (8). As the results, these compounds showed comparable or less potency compared to the corresponding parent compounds, YH-53/5h (2) and 4. These results should provide useful information for further development of Mpro inhibitors.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2 , Amidas/farmacologia , Halogênios , Inibidores de Proteases/química , Proteínas não Estruturais Virais , Antivirais/química
2.
J Med Chem ; 66(19): 13516-13529, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37756225

RESUMO

The main protease (Mpro) of SARS-CoV-2 is an attractive target for the development of drugs to treat COVID-19. Here, we report the design, synthesis, and structure-activity relationship (SAR) studies of highly potent SARS-CoV-2 Mpro inhibitors including TKB245 (5)/TKB248 (6). Since we have previously developed Mpro inhibitors (3) and (4), several hybrid molecules of these previous compounds combined with nirmatrelvir (1) were designed and synthesized. Compounds such as TKB245 (5) and TKB248 (6), containing a 4-fluorobenzothiazole moiety at the P1' site, are highly effective in the blockade of SARS-CoV-2 replication in VeroE6 cells. Replacement of the P1-P2 amide with the thioamide surrogate in TKB248 (6) improved its PK profile in mice compared to that of TKB245 (5). A new diversity-oriented synthetic route to TKB245 (5) derivatives was also developed. The results of the SAR studies suggest that TKB245 (5) and TKB248 (6) are useful lead compounds for the further development of Mpro inhibitors.

3.
Sci Adv ; 9(28): eadg2955, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37436982

RESUMO

Nuclear localization signal (NLS) of HIV-1 integrase (IN) is implicated in nuclear import of HIV-1 preintegration complex (PIC). Here, we established a multiclass drug-resistant HIV-1 variant (HIVKGD) by consecutively exposing an HIV-1 variant to various antiretroviral agents including IN strand transfer inhibitors (INSTIs). HIVKGD was extremely susceptible to a previously reported HIV-1 protease inhibitor, GRL-142, with IC50 of 130 femtomolar. When cells were exposed to HIVKGD IN-containing recombinant HIV in the presence of GRL-142, significant decrease of unintegrated 2-LTR circular cDNA was observed, suggesting that nuclear import of PIC was severely compromised by GRL-142. X-ray crystallographic analyses revealed that GRL-142 interacts with NLS's putative sequence (DQAEHLK) and sterically blocks the nuclear transport of GRL-142-bound HIVKGD's PIC. Highly INSTI-resistant HIV-1 variants isolated from heavily INSTI-experienced patients proved to be susceptible to GRL-142, suggesting that NLS-targeting agents would serve as salvage therapy agents for highly INSTI-resistant variant-harboring individuals. The data should offer a new modality to block HIV-1 infectivity and replication and shed light on developing NLS inhibitors for AIDS therapy.


Assuntos
Integrase de HIV , HIV-1 , Humanos , Sinais de Localização Nuclear/genética , HIV-1/genética , Integrase de HIV/genética , Antivirais
4.
RSC Adv ; 13(23): 15999-16011, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37265996

RESUMO

Encouraged by our recent findings that 4'-cyano-deoxyguanosine (2), entecavir analogues 4 and 5 are highly potent anti-hepatitis B virus (HBV) agents, we designed and synthesized 6 having a hybridized structure of 4 and 5. The chiral quaternary carbon portion at the 4'-position, which is substituted by cyano- and 5'-hydroxymethyl groups, was stereospecifically constructed by radical-mediated 5-exo-dig mode cyclization of 10. The introduction of the fluorine atom into the 6''-position was achieved by radical-mediated stannylation of sulfide (E)-11 and subsequent electrophilic fluorination of (E)-12. The desired (E)-6 was obtained after the introduction of the guanine base into (E)-18 under Mitsunobu conditions and following global deprotection. The stereoisomer (Z)-6 was also prepared by the same procedure using (Z)-12. Compound (E)-6 showed highly potent anti-HBV activity (EC50 = 1.2 nM) with favorable cytotoxicity (CC50 = 93 µM).

5.
Nat Commun ; 14(1): 1076, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841831

RESUMO

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Assuntos
Antivirais , COVID-19 , Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Animais , Humanos , Camundongos , Antivirais/farmacologia , Benzotiazóis , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/química , Proteases 3C de Coronavírus/antagonistas & inibidores
6.
iScience ; 25(11): 105365, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36338434

RESUMO

Potent and biostable inhibitors of the main protease (Mpro) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (2). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of Mpro and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound 3 is highly potent and blocks SARS-CoV-2 infection in vitro without a viral breakthrough. The derivatives, which contain a thioamide surrogate in the P2-P1 amide bond of these compounds (2 and 3), showed remarkably preferable pharmacokinetics in mice compared with the corresponding parent compounds. These data show that compounds 3 and its biostable derivative 4 are potential drugs for treating COVID-19 and that replacement of the digestible amide bond by its thioamide surrogate structure is an effective method.

7.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290777

RESUMO

Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these proteases can be reversibly regulated by cysteine (Cys) glutathionylation and/or methionine oxidation (for HIV-2). These modifications lead to inhibition of protease dimerization and therefore loss of activity. These changes are reversible with the cellular enzymes, glutaredoxin or methionine sulfoxide reductase. Perhaps more importantly, as a result, the maturation of retroviral particles can also be regulated through reversible oxidation and this has been demonstrated for HIV-1, HIV-2, Mason-Pfizer monkey virus (M-PMV) and murine leukemia virus (MLV). More recently, our group has learned that SARS-CoV-2 main protease (Mpro) dimerization and activity can also be regulated through reversible glutathionylation of Cys300. Overall, these studies reveal a conserved way for viruses to regulate viral polyprotein processing particularly during oxidative stress and reveal novel targets for the development of inhibitors of dimerization and activity of these important viral enzyme targets.

8.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35551368

RESUMO

Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6-/- mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)-containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6-/- mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.


Assuntos
GTP Fosfo-Hidrolases , Síndromes de Imunodeficiência , Animais , Autofagia , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Inflamação , Camundongos
9.
Glob Health Med ; 4(6): 296-300, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36589216

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic with more than 6.5 million deaths since 2019. Although a number of vaccines significantly reduced the mortality rate, a large number of the world population is yet being infected with highly contagious omicron variants/subvarints. Additional therapeutic interventions are needed to reduce hospitalization and curb the ongoing pandemic. The activity of the SARS-CoV-2 enzyme; chymotrypsin-like main protease (Mpro) is essential for the cleavage of viral nonstructural polypeptides into individual functional proteins and therefore Mpro is an attractive drug target. The aim of this review is to summarize recent progress toward the development of therapeutic drugs against Mpro protease.

10.
mBio ; 12(4): e0209421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399606

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for coronavirus disease 2019 (COVID-19), encodes two proteases required for replication. The main protease (Mpro), encoded as part of two polyproteins, pp1a and pp1ab, is responsible for 11 different cleavages of these viral polyproteins to produce mature proteins required for viral replication. Mpro is therefore an attractive target for therapeutic interventions. Certain proteins in cells under oxidative stress undergo modification of reactive cysteines. We show Mpro is susceptible to glutathionylation, leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that modification of a single cysteine with glutathione is sufficient to block dimerization and inhibit its activity. Gel filtration studies as well as analytical ultracentrifugation confirmed that glutathionylated Mpro exists as a monomer. Tryptic and chymotryptic digestions of Mpro as well as experiments using a C300S Mpro mutant revealed that Cys300, which is located at the dimer interface, is a primary target of glutathionylation. Moreover, Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of a non-active site cysteine, Cys300, which itself is not required for Mpro activity, and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to the pathophysiology of SARS-CoV-2 and related bat coronaviruses. IMPORTANCE SARS-CoV-2 is responsible for the devastating COVID-19 pandemic. Therefore, it is imperative that we learn as much as we can about the biochemistry of the coronavirus proteins to inform development of therapy. One attractive target is the main protease (Mpro), a dimeric enzyme necessary for viral replication. Most work thus far developing Mpro inhibitors has focused on the active site. Our work has revealed a regulatory mechanism for Mpro activity through glutathionylation of a cysteine (Cys300) at the dimer interface, which can occur in cells under oxidative stress. Cys300 glutathionylation inhibits Mpro activity by blocking its dimerization. This provides a novel accessible and reactive target for drug development. Moreover, this process may have implications for disease pathophysiology in humans and bats. It may be a mechanism by which SARS-CoV-2 has evolved to limit replication and avoid killing host bats when they are under oxidative stress during flight.


Assuntos
Proteases 3C de Coronavírus/metabolismo , Cisteína/química , Glutationa/química , Multimerização Proteica , SARS-CoV-2/metabolismo , Animais , COVID-19/patologia , Quirópteros/virologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Dimerização , Glutarredoxinas/metabolismo , Humanos , SARS-CoV-2/enzimologia
11.
bioRxiv ; 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33851157

RESUMO

SARS-CoV-2 encodes main protease (Mpro), an attractive target for therapeutic interventions. We show Mpro is susceptible to glutathionylation leading to inhibition of dimerization and activity. Activity of glutathionylated Mpro could be restored with reducing agents or glutaredoxin. Analytical studies demonstrated that glutathionylated Mpro primarily exists as a monomer and that a single modification with glutathione is sufficient to block dimerization and loss of activity. Proteolytic digestions of Mpro revealed Cys300 as a primary target of glutathionylation, and experiments using a C300S Mpro mutant revealed that Cys300 is required for inhibition of activity upon Mpro glutathionylation. These findings indicate that Mpro dimerization and activity can be regulated through reversible glutathionylation of Cys300 and provides a novel target for the development of agents to block Mpro dimerization and activity. This feature of Mpro may have relevance to human disease and the pathophysiology of SARS-CoV-2 in bats, which develop oxidative stress during flight.

12.
Nat Commun ; 12(1): 668, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510133

RESUMO

Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 µM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Inibidores de Protease de Coronavírus/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteases Virais/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Indóis/farmacologia , Piridinas/farmacologia , Células Vero , Proteases Virais/metabolismo
13.
J Hepatol ; 74(5): 1075-1086, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33333207

RESUMO

BACKGROUND & AIMS: While certain nucleos(t)ide reverse transcriptase inhibitors (NRTIs) are efficacious in treating HBV infection, their effects are yet to be optimized and the emergence of NRTI-resistant HBV variants is an issue because of the requirement for lifelong treatment. The development of agents that more profoundly suppress wild-type and drug-resistant HBVs, and that have a long-acting effect, are crucial to improve patient outcomes. METHODS: Herein, we synthesized a novel long-acting 4'-modified NRTI termed E-CFCP. We tested its anti-HBV activity in vitro, before evaluating its anti-HBV activity in HBV-infected human-liver-chimeric mice (PXB-mice). E-CFCP's long-acting features and E-CFCP-triphosphate's interactions with the HBV reverse transcriptase (HBV-RT) were examined. RESULTS: E-CFCP potently blocked HBVWTD1 production (IC50qPCR_cell=1.8 nM) in HepG2.2.15 cells and HBVWTC2 (IC50SB_cell=0.7 nM), entecavir (ETV)-resistant HBVETV-RL180M/S202G/M204V (IC50SB_cell=77.5 nM), and adefovir-resistant HBVADV-RA181T/N236T production (IC50SB_cell=14.1 nM) in Huh7 cells. E-CFCP profoundly inhibited intracellular HBV DNA production to below the detection limit, but ETV and tenofovir alafenamide (TAF) failed to do so. E-CFCP also showed less toxicity than ETV and TAF. E-CFCP better penetrated hepatocytes and was better tri-phosphorylated; E-CFCP-triphosphate persisted intracellularly for longer than ETV-triphosphate. Once-daily peroral E-CFCP administration over 2 weeks (0.02~0.2 mg/kg/day) reduced HBVWTC2-viremia by 2-3 logs in PXB-mice without significant toxicities and the reduction persisted over 1-3 weeks following treatment cessation, suggesting once-weekly dosing capabilities. E-CFCP also reduced HBVETV-RL180M/S202G/M204V-viremia by 2 logs over 2 weeks, while ETV completely failed to reduce HBVETV-RL180M/S202G/M204V-viremia. E-CFCP's 4'-cyano and fluorine interact with both HBVWT-RT and HBVETV-RL180M/S202G-M204 -RT via Van der Waals and polar forces, being important for E-CFCP-triphosphate's interactions and anti-HBV potency. CONCLUSION: E-CFCP represents the first reported potential long-acting NRTI with potent activity against wild-type and treatment-resistant HBV. LAY SUMMARY: Although there are currently effective treatment options for HBV, treatment-resistant variants and the need for lifelong therapy pose a significant challenge. Therefore, the development of new treatment options is crucial to improve outcomes and quality of life. Herein, we report preclinical evidence showing that the anti-HBV agent, E-CFCP, has potent activity against wild-type and treatment-resistant variants. In addition, once-weekly oral dosing may be possible, which is preferrable to the current daily dosing regimens.


Assuntos
Desenvolvimento de Medicamentos/métodos , Farmacorresistência Viral/efeitos dos fármacos , Vírus da Hepatite B , Hepatite B , Inibidores da Transcriptase Reversa/farmacologia , Animais , Preparações de Ação Retardada/farmacologia , Modelos Animais de Doenças , Vias de Administração de Medicamentos , Esquema de Medicação , Hepatite B/tratamento farmacológico , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Humanos , Camundongos , DNA Polimerase Dirigida por RNA/metabolismo , Tempo
14.
mBio ; 11(4)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820005

RESUMO

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Indóis/farmacologia , Pneumonia Viral/tratamento farmacológico , Sequência de Aminoácidos , Animais , Betacoronavirus/enzimologia , COVID-19 , Chlorocebus aethiops , Cloroquina/farmacologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Indóis/química , Indóis/uso terapêutico , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
15.
Sci Rep ; 10(1): 10664, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606378

RESUMO

HIV-1 protease inhibitors (PIs), such as darunavir (DRV), are the key component of antiretroviral therapy. However, HIV-1 often acquires resistance to PIs. Here, seven novel PIs were synthesized, by introducing single atom changes such as an exchange of a sulfur to an oxygen, scission of a single bond in P2'-cyclopropylaminobenzothiazole (or -oxazole), and/or P1-benzene ring with fluorine scan of mono- or bis-fluorine atoms around DRV's scaffold. X-ray structural analyses of the PIs complexed with wild-type Protease (PRWT) and highly-multi-PI-resistance-associated PRDRVRP51 revealed that the PIs better adapt to structural plasticity in PR with resistance-associated amino acid substitutions by formation of optimal sulfur bond and adaptation of cyclopropyl ring in the S2'-subsite. Furthermore, these PIs displayed increased cell permeability and extreme anti-HIV-1 potency compared to DRV. Our work provides the basis for developing novel PIs with high potency against PI-resistant HIV-1 variants with a high genetic barrier.


Assuntos
Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , Linhagem Celular , Darunavir/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , Humanos , Replicação Viral/efeitos dos fármacos
16.
Sci Rep ; 9(1): 9806, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285456

RESUMO

Accumulation of amino acid (AA) insertions/substitutions are observed in the Gag-protein of HIV-1 variants resistant to HIV-1 protease inhibitors. Here, we found that HIV-1 carrying AA insertions in capsid protein (CA) undergoes aberrant CA degradation. When we generated recombinant HIV-1s (rHIV-1s) containing 19-AAs in Gag, such insertions caused significant CA degradation, which initiated in CA's C-terminal. Such rHIV-1s had remarkable morphological abnormality, decreased infectivity, and no replicative ability, which correlated with levels of CA degradation. The CA degradation observed was energy-independent and had no association with cellular/viral proteolytic mechanisms, suggesting that the CA degradation occurs due to conformational/structural incompatibility caused by the 19-AA insertions. The incorporation of degradation-prone CA into the wild-type CA resulted in significant disruption of replication competence in "chimeric" virions. The data should allow better understanding of the dynamics and mechanisms of CA decomposition/degradation and retroviral uncoating, which may lead to new approach for antiretroviral modalities.


Assuntos
Capsídeo/química , HIV-1/patogenicidade , Mutagênese Insercional , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , HIV-1/genética , Humanos , Modelos Moleculares , Conformação Proteica , Fatores de Tempo , Virulência , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
17.
Artigo em Inglês | MEDLINE | ID: mdl-31085520

RESUMO

Combination antiretroviral therapy has achieved dramatic reductions in the mortality and morbidity in people with HIV-1 infection. Darunavir (DRV) represents a most efficacious and well-tolerated protease inhibitor (PI) with a high genetic barrier to the emergence of drug-resistant HIV-1. However, highly DRV-resistant variants have been reported in patients receiving long-term DRV-containing regimens. Here, we report three novel HIV-1 PIs (GRL-057-14, GRL-058-14, and GRL-059-14), all of which contain a P2-amino-substituted-bis-tetrahydrofuranylurethane (bis-THF) and a P2'-cyclopropyl-amino-benzothiazole (Cp-Abt). These PIs not only potently inhibit the replication of wild-type HIV-1 (50% effective concentration [EC50], 0.22 nM to 10.4 nM) but also inhibit multi-PI-resistant HIV-1 variants, including highly DRV-resistant HIVDRVRP51 (EC50, 1.6 nM to 30.7 nM). The emergence of HIV-1 variants resistant to the three compounds was much delayed in selection experiments compared to resistance to DRV, using a mixture of 11 highly multi-PI-resistant HIV-1 isolates as a starting HIV-1 population. GRL-057-14 showed the most potent anti-HIV-1 activity and greatest thermal stability with wild-type protease, and potently inhibited HIV-1 protease's proteolytic activity (Ki value, 0.10 nM) among the three PIs. Structural models indicate that the C-5-isopropylamino-bis-THF moiety of GRL-057-14 forms additional polar interactions with the active site of HIV-1 protease. Moreover, GRL-057-14's P1-bis-fluoro-methylbenzene forms strong hydrogen bonding and effective van der Waals interactions. The present data suggest that the combination of C-5-aminoalkyl-bis-THF, P1-bis-fluoro-methylbenzene, and P2'-Cp-Abt confers highly potent activity against wild-type and multi-PI-resistant HIV strains and warrant further development of the three PIs, in particular, that of GRL-057-14, as potential therapeutic for HIV-1 infection and AIDS.


Assuntos
Farmacorresistência Viral Múltipla/efeitos dos fármacos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Benzimidazóis/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Viral Múltipla/genética , Estabilidade Enzimática , Infecções por HIV/tratamento farmacológico , Infecções por HIV/microbiologia , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Uretana/química
18.
Nat Chem Biol ; 15(6): 641-649, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31011214

RESUMO

Clathrin-mediated endocytosis (CME) is a highly conserved and essential cellular process in eukaryotic cells, but its dynamic and vital nature makes it challenging to study using classical genetics tools. In contrast, although small molecules can acutely and reversibly perturb CME, the few chemical CME inhibitors that have been applied to plants are either ineffective or show undesirable side effects. Here, we identify the previously described endosidin9 (ES9) as an inhibitor of clathrin heavy chain (CHC) function in both Arabidopsis and human cells through affinity-based target isolation, in vitro binding studies and X-ray crystallography. Moreover, we present a chemically improved ES9 analog, ES9-17, which lacks the undesirable side effects of ES9 while retaining the ability to target CHC. ES9 and ES9-17 have expanded the chemical toolbox used to probe CHC function, and present chemical scaffolds for further design of more specific and potent CHC inhibitors across different systems.


Assuntos
Derivados de Benzeno/farmacologia , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Endocitose/efeitos dos fármacos , Arabidopsis , Derivados de Benzeno/química , Cadeias Pesadas de Clatrina/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Tiofenos/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-30962341

RESUMO

We generated two novel nonpeptidic HIV-1 protease inhibitors (PIs), GRL-001-15 and GRL-003-15, which contain unique crown-like tetrahydropyranofuran (Crn-THF) and P2'-cyclopropyl-aminobenzothiazole (Cp-Abt) moieties as P2 and P2' ligands, respectively. GRL-001-15 and GRL-003-15 have meta-monofluorophenyl and para-monofluorophenyl at the P1 site, respectively, exert highly potent activity against wild-type HIV-1 with 50% effective concentrations (EC50s) of 57 and 50 pM, respectively, and have favorable cytotoxicity profiles with 50% cytotoxic concentrations (CC50s) of 38 and 11 µM, respectively. The activity of GRL-001-15 against multi-PI-resistant HIV-1 variants was generally greater than that of GRL-003-15. The EC50 of GRL-001-15 against an HIV-1 variant that was highly resistant to multiple PIs, including darunavir (DRV) (HIV-1DRVRP30), was 0.17 nM, and that of GRL-003-15 was 3.3 nM, while DRV was much less active, with an EC50 of 216 nM. The emergence of HIV-1 variants resistant to GRL-001-15 and GRL-003-15 was significantly delayed compared to that of variants resistant to selected PIs, including DRV. Structural analyses of wild-type protease (PRWT) complexed with the novel PIs revealed that GRL-001-15's meta-fluorine atom forms halogen bond interactions (2.9 and 3.0 Å) with Gly49 and Ile50, respectively, of the protease flap region and with Pro81' (2.7 and 3.2 Å), which is located close to the protease active site, and that two fluorine atoms of GRL-142-13 form multiple halogen bond interactions with Gly49, Ile50, Pro81', Ile82', and Arg8'. In contrast, GRL-003-15 forms halogen bond interactions with Pro81' alone, suggesting that the reduced antiviral activity of GRL-003-15 is due to the loss of the interactions with the flap region.


Assuntos
Antirreumáticos/farmacologia , Inibidores da Protease de HIV/farmacologia , Darunavir/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos
20.
Elife ; 62017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039736

RESUMO

Antiretroviral therapy for HIV-1 infection/AIDS has significantly extended the life expectancy of HIV-1-infected individuals and reduced HIV-1 transmission at very high rates. However, certain individuals who initially achieve viral suppression to undetectable levels may eventually suffer treatment failure mainly due to adverse effects and the emergence of drug-resistant HIV-1 variants. Here, we report GRL-142, a novel HIV-1 protease inhibitor containing an unprecedented 6-5-5-ring-fused crown-like tetrahydropyranofuran, which has extremely potent activity against all HIV-1 strains examined with IC50 values of attomolar-to-picomolar concentrations, virtually no effects on cellular growth, extremely high genetic barrier against the emergence of drug-resistant variants, and favorable intracellular and central nervous system penetration. GRL-142 forms optimum polar, van der Waals, and halogen bond interactions with HIV-1 protease and strongly blocks protease dimerization, demonstrating that combined multiple optimizing elements significantly enhance molecular and atomic interactions with a target protein and generate unprecedentedly potent and practically favorable agents.


Assuntos
Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , Animais , Células Cultivadas , Sistema Nervoso Central/química , Farmacorresistência Viral , Protease de HIV/metabolismo , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/isolamento & purificação , Inibidores da Protease de HIV/farmacocinética , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Ligação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA