Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 16(6): 1690-1700, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27475227

RESUMO

The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Animais , Anticorpos/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Técnicas de Cocultura/métodos , Citocinas/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo
2.
MAbs ; 8(3): 593-603, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26918260

RESUMO

MPDL3280A is a human monoclonal antibody that targets programmed cell death-1 ligand 1 (PD-L1), and exerts anti-tumor activity mainly by blocking PD-L1 interaction with programmed cell death-1 (PD-1) and B7.1. It is being investigated as a potential therapy for locally advanced or metastatic malignancies. The purpose of the study reported here was to characterize the pharmacokinetics, pharmacodynamics, tissue distribution and tumor penetration of MPDL3280A and/or a chimeric anti-PD-L1 antibody PRO304397 to help further clinical development. The pharmacokinetics of MPDL3280A in monkeys at 0.5, 5 and 20 mg · kg(-1) and the pharmacokinetics / pharmacodynamics of PRO304397 in mice at 1, 3 10 mg · kg(-1) were determined after a single intravenous dose. Tissue distribution and tumor penetration for radiolabeled PRO304397 in tumor-bearing mouse models were determined. The pharmacokinetics of MPDL3280A and PRO304397 were nonlinear in monkeys and mice, respectively. Complete saturation of PD-L1 in blood in mice was achieved at serum concentrations of PRO304397 above ∼ 0.5 µg · mL(-1). Tissue distribution and tumor penetration studies of PRO304397 in tumor-bearing mice indicated that the minimum tumor interstitial to plasma radioactivity ratio was ∼ 0.3; saturation of target-mediated uptake in non-tumor tissues and desirable exposure in tumors were achieved at higher serum concentrations, and the distribution into tumors was dose-and time-dependent. The biodistribution data indicated that the efficacious dose is mostly likely higher than that estimated based on simple pharmacokinetics/pharmacodynamics in blood. These data also allowed for estimation of the target clinical dose for further development of MPDL3280A.


Assuntos
Anticorpos Monoclonais , Anticorpos Antineoplásicos , Antígeno B7-H1/antagonistas & inibidores , Pontos de Checagem do Ciclo Celular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/farmacologia , Antígeno B7-H1/imunologia , Células CHO , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/imunologia , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
3.
Neuron ; 89(1): 70-82, 2016 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-26687840

RESUMO

The blood-brain barrier (BBB) poses a major challenge for developing effective antibody therapies for neurological diseases. Using transcriptomic and proteomic profiling, we searched for proteins in mouse brain endothelial cells (BECs) that could potentially be exploited to transport antibodies across the BBB. Due to their limited protein abundance, neither antibodies against literature-identified targets nor BBB-enriched proteins identified by microarray facilitated significant antibody brain uptake. Using proteomic analysis of isolated mouse BECs, we identified multiple highly expressed proteins, including basigin, Glut1, and CD98hc. Antibodies to each of these targets were significantly enriched in the brain after administration in vivo. In particular, antibodies against CD98hc showed robust accumulation in brain after systemic dosing, and a significant pharmacodynamic response as measured by brain Aß reduction. The discovery of CD98hc as a robust receptor-mediated transcytosis pathway for antibody delivery to the brain expands the current approaches available for enhancing brain uptake of therapeutic antibodies.


Assuntos
Anticorpos/uso terapêutico , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Receptores da Transferrina/metabolismo , Animais , Anticorpos/imunologia , Células Endoteliais/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/imunologia , Camundongos , Proteômica/métodos , Transcitose/fisiologia
4.
J Control Release ; 214: 94-102, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210441

RESUMO

Subcutaneous (SC) injection is becoming a more common route for the administration of biopharmaceuticals. Currently, there is no reliable in vitro method that can be used to anticipate the in vivo performance of a biopharmaceutical formulation intended for SC injection. Nor is there an animal model that can predict in vivo outcomes such as bioavailability in humans. We address this unmet need by the development of a novel in vitro system, termed Scissor (Subcutaneous Injection Site Simulator). The system models environmental changes that a biopharmaceutical could experience as it transitions from conditions of a drug product formulation to the homeostatic state of the hypodermis following SC injection. Scissor uses a dialysis-based injection chamber, which can incorporate various concentrations and combinations of acellular extracellular matrix (ECM) components that may affect the release of a biopharmaceutical from the SC injection site. This chamber is immersed in a container of a bicarbonate-based physiological buffer that mimics the SC injection site and the infinite sink of the body. Such an arrangement allows for real-time monitoring of the biopharmaceutical within the injection chamber, and can be used to characterize physicochemical changes of the drug and its interactions with ECM components. Movement of a biopharmaceutical from the injection chamber to the infinite sink compartment simulates the drug migration from the injection site and uptake by the blood and/or lymph capillaries. Here, we present an initial evaluation of the Scissor system using the ECM element hyaluronic acid and test formulations of insulin and four different monoclonal antibodies. Our findings suggest that Scissor can provide a tractable method to examine the potential fate of a biopharmaceutical formulation after its SC injection in humans and that this approach may provide a reliable and representative alternative to animal testing for the initial screening of SC formulations.


Assuntos
Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Bicarbonatos/química , Produtos Biológicos/química , Soluções Tampão , Química Farmacêutica , Diálise , Desenho de Fármacos , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Injeções Subcutâneas , Linfa/metabolismo , Tela Subcutânea/metabolismo
5.
Drug Metab Lett ; 9(2): 119-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26031461

RESUMO

DM1, a derivative of maytansine, is the cytotoxic component of the antibody-drug conjugate trastuzumab emtansine (T-DM1). Understanding the disposition and metabolism of DM1 would help to assess (1) any tissue-specific distribution and risk for potential drug-drug interactions and (2) the need for special patient population studies. To this end, the current study determined the disposition and metabolism of DM1 following single intravenous administration of [(3)H]-DM1 in Sprague Dawley rats. Blood, tissues, urine, bile, and feces were collected up to 5 days after dose administration and analyzed for total radioactivity and metabolites. Results showed that radioactivity cleared rapidly from the blood and quickly distributed to the lungs, liver, kidneys, spleen, heart, gastrointestinal tract, adrenal glands, and other tissues without significant accumulation or persistence. The majority of dosed radioactivity was recovered in feces (~100% of the injected dose over 5 days) with biliary elimination being the predominant route (~46% of the injected dose over 3 days). Excretion in urine was minimal (~5% of the injected dose over 5 days). Mass balance was achieved over 5 days. An analysis of bile samples revealed a small fraction of intact DM1 and a predominance of DM1 metabolites formed through oxidation, hydrolysis, S-methylation, and glutathione and its related conjugates. Collectively, these data demonstrate that DM1 is extensively distributed and quickly cleared from blood, and undergoes extensive metabolism to form multiple metabolites, which are mainly eliminated through the hepatic-biliary route, suggesting that hepatic function (but not renal function) plays an important role in DM1 elimination.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos/farmacocinética , Fígado/metabolismo , Maitansina/análogos & derivados , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/sangue , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Bile/metabolismo , Biotransformação , Fezes/química , Feminino , Glutationa/metabolismo , Eliminação Hepatobiliar , Hidrólise , Injeções Intravenosas , Maitansina/administração & dosagem , Maitansina/sangue , Maitansina/farmacocinética , Metilação , Estrutura Molecular , Oxirredução , Ratos Sprague-Dawley , Eliminação Renal , Distribuição Tecidual , Trastuzumab
6.
Clin Cancer Res ; 21(1): 123-33, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25370470

RESUMO

PURPOSE: Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) comprising the cytotoxic agent DM1 conjugated to trastuzumab with a stable linker. Thrombocytopenia was the dose-limiting toxicity in the phase I study, and grade ≥3 thrombocytopenia occurred in up to 13% of patients receiving T-DM1 in phase III studies. We investigated the mechanism of T-DM1-induced thrombocytopenia. EXPERIMENTAL DESIGN: The effect of T-DM1 on platelet function was measured by aggregometry, and by flow cytometry to detect the markers of activation. The effect of T-DM1 on differentiation and maturation of megakaryocytes (MK) from human hematopoietic stem cells was assessed by flow cytometry and microscopy. Binding, uptake, and catabolism of T-DM1 in MKs, were assessed by various techniques including fluorescence microscopy, scintigraphy to detect T-[H(3)]-DM1 and (125)I-T-DM1, and mass spectrometry. The role of FcγRIIa was assessed using blocking antibodies and mutant constructs of trastuzumab that do not bind FcγR. RESULTS: T-DM1 had no direct effect on platelet activation and aggregation, but it did markedly inhibit MK differentiation via a cytotoxic effect. Inhibition occurred with DM1-containing ADCs but not with trastuzumab demonstrating a role for DM1. MKs internalized these ADCs in a HER2-independent, FcγRIIa-dependent manner, resulting in intracellular release of DM1. Binding and internalization of T-DM1 diminished as MKs matured; however, prolonged exposure of mature MKs to T-DM1 resulted in a disrupted cytoskeletal structure. CONCLUSIONS: These data support the hypothesis that T-DM1-induced thrombocytopenia is mediated in large part by DM1-induced impairment of MK differentiation, with a less pronounced effect on mature MKs.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Maitansina/análogos & derivados , Trombocitopenia/patologia , Ado-Trastuzumab Emtansina , Anticorpos Monoclonais Humanizados/administração & dosagem , Antineoplásicos/administração & dosagem , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/efeitos adversos , Maitansina/administração & dosagem , Maitansina/efeitos adversos , Megacariócitos/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Plasma Rico em Plaquetas/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Trombocitopenia/induzido quimicamente , Trombocitopenia/etiologia , Trastuzumab
7.
MAbs ; 6(6): 1631-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25484068

RESUMO

Delta-like-4 ligand (DLL4) plays an important role in vascular development and is widely expressed on the vasculature of normal and tumor tissues. Anti-DLL4 is a humanized IgG1 monoclonal antibody against DLL4. The purpose of these studies was to characterize the pharmacokinetics (PK), tissue distribution, and anti-tumor efficacy of anti-DLL4 in mice over a range of doses. PK and tissue distribution of anti-DLL4 were determined in athymic nude mice after administration of single intravenous (IV) doses. In the tissue distribution study, radiolabeled anti-DLL4 (mixture of (125)Iodide and (111)Indium) was administered in the presence of increasing amounts of unlabeled anti-DLL4. Dose ranging anti-DLL4 anti-tumor efficacy was evaluated in athymic nude mice bearing MV522 human lung tumor xenografts. Anti-DLL4 had nonlinear PK in mice with rapid serum clearance at low doses and slower clearance at higher doses suggesting the involvement of target mediated clearance. Consistent with the PK data, anti-DLL4 was shown to specifically distribute to several normal tissues known to express DLL4 including the lung and liver. Maximal efficacy in the xenograft model was seen at doses ≥ 10 mg/kg when tissue sinks were presumably saturated, consistent with the PK and tissue distribution profiles. These findings highlight the importance of mechanistic understanding of antibody disposition to enable dosing strategies for maximizing efficacy.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/sangue , Anticorpos Monoclonais Humanizados/imunologia , Área Sob a Curva , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Radioisótopos de Índio/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Radioisótopos do Iodo/farmacocinética , Neoplasias Pulmonares/imunologia , Proteínas de Membrana/imunologia , Taxa de Depuração Metabólica , Camundongos Nus , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Transl Med ; 6(261): 261ra154, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378646

RESUMO

Using therapeutic antibodies that need to cross the blood-brain barrier (BBB) to treat neurological disease is a difficult challenge. We have shown that bispecific antibodies with optimized binding to the transferrin receptor (TfR) that target ß-secretase (BACE1) can cross the BBB and reduce brain amyloid-ß (Aß) in mice. Can TfR enhance antibody uptake in the primate brain? We describe two humanized TfR/BACE1 bispecific antibody variants. Using a human TfR knock-in mouse, we observed that anti-TfR/BACE1 antibodies could cross the BBB and reduce brain Aß in a TfR affinity-dependent fashion. Intravenous dosing of monkeys with anti-TfR/BACE1 antibodies also reduced Aß both in cerebral spinal fluid and in brain tissue, and the degree of reduction correlated with the brain concentration of anti-TfR/BACE1 antibody. These results demonstrate that the TfR bispecific antibody platform can robustly and safely deliver therapeutic antibody across the BBB in the primate brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/imunologia , Anticorpos Biespecíficos/farmacocinética , Antígenos CD/imunologia , Ácido Aspártico Endopeptidases/imunologia , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Receptores da Transferrina/imunologia , Administração Intravenosa , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/sangue , Anticorpos Biespecíficos/imunologia , Especificidade de Anticorpos , Antígenos CD/genética , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Transporte Biológico , Células CHO , Cricetulus , Reações Cruzadas , Regulação para Baixo , Células HEK293 , Humanos , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Transfecção
9.
Mol Pharm ; 11(5): 1591-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24702191

RESUMO

A solid understanding of physiology is beneficial in optimizing drug delivery and in the development of clinically predictive models of drug disposition kinetics. Although an abundance of data exists in the literature, it is often confounded by the use of various experimental methods and a lack of consensus in values from different sources. To help address this deficiency, we sought to directly compare three important vascular parameters at the tissue level using the same experimental approach in both mice and rats. Interstitial volume, vascular volume, and blood flow were radiometrically measured in selected harvested tissues of both species by extracellular marker infusion, red blood cell labeling, and rubidium chloride bolus distribution, respectively. The latter two parameters were further compared by whole-body autoradiographic imaging. An overall good interspecies agreement was observed for interstitial volume and blood flow on a weight-normalized basis in most tissues. In contrast, the measured vascular volumes of most rat tissues were higher than for mouse. Mice and rats, the two most commonly utilized rodent species in translational drug development, should not be considered as interchangeable in terms of vascular volume per gram of tissue. This will be particularly critical in biodistribution studies of drugs, as the amount of drug in the residual blood of tissues is often not negligible, especially for biologic drugs (e.g., antibodies) having long circulation half-lives. Physiologically based models of drug pharmacokinetics and/or pharmacodynamics also rely on accurate knowledge of biological parameters in tissues. For tissue parameters with poor interspecies agreement, the significance and possible drivers are discussed.


Assuntos
Volume Sanguíneo/fisiologia , Camundongos/fisiologia , Ratos/fisiologia , Animais , Peso Corporal/fisiologia , Feminino , Modelos Teóricos , Ratos Sprague-Dawley
10.
MAbs ; 6(3): 689-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24572100

RESUMO

The neonatal Fc receptor (FcRn) plays an important and well-known role in antibody recycling in endothelial and hematopoietic cells and thus it influences the systemic pharmacokinetics (PK) of immunoglobulin G (IgG). However, considerably less is known about FcRn's role in the metabolism of IgG within individual tissues after intravenous administration. To elucidate the organ distribution and gain insight into the metabolism of humanized IgG1 antibodies with different binding affinities FcRn, comparative biodistribution studies in normal CD-1 mice were conducted. Here, we generated variants of herpes simplex virus glycoprotein D-specific antibody (humanized anti-gD) with increased and decreased FcRn binding affinity by genetic engineering without affecting antigen specificity. These antibodies were expressed in Chinese hamster ovary cell lines, purified and paired radiolabeled with iodine-125 and indium-111. Equal amounts of I-125-labeled and In-111-labeled antibodies were mixed and intravenously administered into mice at 5 mg/kg. This approach allowed us to measure both the real-time IgG uptake (I-125) and cumulative uptake of IgG and catabolites (In-111) in individual tissues up to 1 week post-injection. The PK and distribution of the wild-type IgG and the variant with enhanced binding for FcRn were largely similar to each other, but vastly different for the rapidly cleared low-FcRn-binding variant. Uptake in individual tissues varied across time, FcRn binding affinity, and radiolabeling method. The liver and spleen emerged as the most concentrated sites of IgG catabolism in the absence of FcRn protection. These data provide an increased understanding of FcRn's role in antibody PK and catabolism at the tissue level.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Receptores Fc/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/genética , Células CHO , Cricetinae , Cricetulus , Feminino , Variação Genética , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Radioisótopos de Índio/administração & dosagem , Radioisótopos de Índio/farmacocinética , Radioisótopos do Iodo/administração & dosagem , Radioisótopos do Iodo/farmacocinética , Camundongos , Proteólise , Receptores Fc/genética , Distribuição Tecidual
11.
J Exp Med ; 211(2): 233-44, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24470444

RESUMO

Antibodies to transferrin receptor (TfR) have potential use for therapeutic entry into the brain. We have shown that bispecific antibodies against TfR and ß-secretase (BACE1 [ß-amyloid cleaving enzyme-1]) traverse the blood-brain barrier (BBB) and effectively reduce brain amyloid ß levels. We found that optimizing anti-TfR affinity improves brain exposure and BACE1 inhibition. Here we probe the cellular basis of this improvement and explore whether TfR antibody affinity alters the intracellular trafficking of TfR. Comparing high- and low-affinity TfR bispecific antibodies in vivo, we found that high-affinity binding to TfR caused a dose-dependent reduction of brain TfR levels. In vitro live imaging and colocalization experiments revealed that high-affinity TfR bispecific antibodies facilitated the trafficking of TfR to lysosomes and thus induced the degradation of TfR, an observation which was further confirmed in vivo. Importantly, high-affinity anti-TfR dosing induced reductions in brain TfR levels, which significantly decreased brain exposure to a second dose of low-affinity anti-TfR bispecific. Thus, high-affinity anti-TfR alters TfR trafficking, which dramatically impacts the capacity for TfR to mediate BBB transcytosis.


Assuntos
Anticorpos Biespecíficos/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Secretases da Proteína Precursora do Amiloide/imunologia , Animais , Afinidade de Anticorpos , Ácido Aspártico Endopeptidases/imunologia , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Feminino , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Transcitose/imunologia , Transcitose/fisiologia
12.
J Med Chem ; 56(23): 9418-26, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24131491

RESUMO

A known limitation of iodine radionuclides for labeling and biological tracking of receptor targeted proteins is the tendency of iodotyrosine to rapidly diffuse from cells following endocytosis and lysosomal degradation. In contrast, radiometal-chelate complexes such as indium-111-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (In-111-DOTA) accumulate within target cells due to the residualizing properties of the polar, charged metal-chelate-amino acid adduct. Iodine radionuclides boast a diversity of nuclear properties and chemical means for incorporation, prompting efforts to covalently link radioiodine with residualizing molecules. Herein, we describe the Ugi-assisted synthesis of [I-125]HIP-DOTA, a 4-hydroxy-3-iodophenyl (HIP) derivative of DOTA, and demonstration of its residualizing properties in a murine xenograft model. Overall, this study displays the power of multicomponent synthesis to yield a versatile radioactive probe for antibodies across multiple therapeutic areas with potential applications in both preclinical biodistribution studies and clinical radioimmunotherapies.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Dipeptídeos/síntese química , Compostos Heterocíclicos com 1 Anel/síntese química , Imunoconjugados/química , Succinimidas/síntese química , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/uso terapêutico , Complexos de Coordenação/metabolismo , Dipeptídeos/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Imunoconjugados/metabolismo , Radioisótopos de Índio , Camundongos , Radioimunoterapia , Succinimidas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Pharm ; 10(5): 1514-21, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23383983

RESUMO

The development of clinically relevant preclinical models that mimic the hallmarks of neurodegenerative disease is an ongoing pursuit in early drug development. In particular, robust physiological characterization of central nervous system (CNS) disease models is necessary to predict drug delivery to target tissues and to correctly interpret pharmacodynamic responses to disease-modifying therapeutic candidates. Efficient drug delivery across the blood-CNS barrier is a particularly daunting task, prompting our strategy to evaluate the biodistribution of five distinct molecular probes in a well-characterized mouse model of neurodegeneration. A transgenic mouse model of amyotrophic lateral sclerosis was selected based on a phenotype resembling clinical symptoms, including loss of motor neurons from the spinal cord and paralysis in one or more limbs, due to expression of a G93A mutant form of human superoxide dismutase (SOD1). The tissue distributions of two proteins, albumin and a representative immunoglobulin G antibody, as well as two blood flow markers, the lipophilic blood flow marker Ceretec (i.e., (99m)Tc-HMPAO) and the polar ionic tracer, rubidium-86 chloride ((86)RbCl), were measured following intravenous injection in SOD1(G93A) and age-matched control mice. The radiopharmaceutical TechneScan PYP was also used to measure the distribution of (99m)Tc-labeled red blood cells as a blood pool marker. Both the antibody and (86)Rb were able to cross the blood-spinal cord barrier in SOD1(G93A) mice to a greater extent than in control mice. Although the biodistribution patterns of antibody, albumin, and RBCs were largely similar, notable differences were detected in muscle and skin. Moreover, vastly different biodistribution patterns were observed for a lipophilic and polar perfusion agent, with SOD1(G93A) mutation resulting in reduced renal filtration rates for the former but not the latter. Overall, the multiprobe strategy provided an opportunity to efficiently collect an abundance of physiological information, including the degree and regional extent of blood-CNS barrier permeability, in a preclinical model of neurodegeneration.


Assuntos
Degeneração Neural/fisiopatologia , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Volume Sanguíneo , Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular , Cloretos/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoglobulina G/metabolismo , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Transporte Proteico , Cintilografia , Compostos Radiofarmacêuticos/farmacocinética , Rubídio/farmacocinética , Radioisótopos de Rubídio/farmacocinética , Superóxido Dismutase/genética , Tecnécio Tc 99m Exametazima/farmacocinética , Distribuição Tecidual
14.
AAPS J ; 14(3): 612-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22648903

RESUMO

Monoclonal antibodies have provided many validated and potential new therapeutic candidates for various diseases encompassing the realms of neurology, ophthalmology, immunology, and especially oncology. The mechanism of action for these biological molecules typically involves specific binding to a soluble ligand or cell surface protein in order to block or alter a molecular pathway, induce a desired cellular response, or deplete a target cell. Many antigens reside within the interstitial space, the fluid-filled compartment that lies between the outer endothelial vessel wall and the plasma membranes of cells. This mini-review examines the concepts relevant to the kinetics and behavior of antibodies within the interstitium with a special emphasis on radiometric measurement of quantitative pharmacology. Molecular probes are discussed to outline chemical techniques, selection criteria, data interpretation, and relevance to the study of antibody pharmacokinetics. The importance of studying the tissue uptake of antibodies at a compartmental level is highlighted, including a brief overview of receptor occupancy and its interpretation in radiotracer studies. Experimental methods for measuring the spatial composition of tissues are examined in terms of relative vascular, interstitial, and cellular volumes using solid tumors as a representative example. Experimental methods and physiologically based pharmacokinetic modeling are introduced as distinct approaches to distinguish between free and bound fractions of interstitial antibody. Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.


Assuntos
Anticorpos/metabolismo , Animais , Humanos , Distribuição Tecidual
15.
AAPS J ; 14(3): 554-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22610647

RESUMO

Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.


Assuntos
Anticorpos/uso terapêutico , Glicosilação , Ponto Isoelétrico
16.
Curr Drug Metab ; 13(7): 901-10, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22475269

RESUMO

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in clinical development for the treatment of human epidermal growth factor receptor 2 (HER2)-positive cancers. Herein, we describe a series of studies to assess T-DM1 absorption, distribution, metabolism, and excretion (ADME) in rats as well as to assess human exposure to T-DM1 catabolites. Following administration of unlabeled and radiolabeled T-DM1 in female Sprague Dawley rats as a single dose, plasma, urine, bile and feces were assessed for mass balance, profiling and identification of catabolites. In rats, the major circulating species in plasma was T-DM1, while DM1 concentrations were low (1.08 to 15.6 ng/mL). The major catabolites found circulating in rat plasma were DM1, [N-maleimidomethyl] cyclohexane-1- carboxylate-DM1 (MCC-DM1), and Lysine-MCC-DM1. These catabolites identified in rats were also detected in plasma samples from patients with HER2-positive metastatic breast cancer who received single-agent T-DM1 (3.6 mg/kg every 3 weeks) in a phase 2 clinical study. There was no evidence of tissue accumulation in rats or catabolite accumulation in human plasma following multiple dosing. In rats, T-DM1 was distributed nonspecifically to the organs without accumulation. The major pathway of DM1-containing catabolite elimination in rats was the fecal/biliary route, with up to 80% of radioactivity recovered in the feces and 50% in the bile. The rat T-DM1 ADME profile is likely similar to the human profile, although there may be differences since trastuzumab does not bind the rat HER2- like receptor. Further research is necessary to more fully understand the T-DM1 ADME profile in humans.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Maitansina/análogos & derivados , Ado-Trastuzumab Emtansina , Animais , Anticorpos Monoclonais Humanizados/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Maitansina/química , Maitansina/metabolismo , Maitansina/farmacocinética , Metabolismo/efeitos dos fármacos , Metabolismo/fisiologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia , Trastuzumab
17.
Bioanalysis ; 4(6): 703-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22452261

RESUMO

BACKGROUND: In evaluating the serum concentrations in mice of a Sema3E IgG1 Fc fusion protein, a possible antitumor agent, two ELISAs were developed: a generic assay detecting only the Fc portion of the therapeutic and a specific receptor-binding assay detecting intact protein. RESULTS: An unexpected discrepancy was observed in the measured in vivo serum concentrations, with the generic ELISA yielding higher concentrations than the specific ELISA. Size-exclusion HPLC and SDS-PAGE analysis of in vitro serum stability samples revealed extensive aggregation of Sema3E-Fc. The generic assay recovered more Sema3E-Fc in the presence of aggregates than the specific assay. CONCLUSION: Biophysical characterization combined with immunochemical analysis was key to elucidating not only the nature of the protein instability, but also the cause for the assay discrepancy.


Assuntos
Ensaio de Imunoadsorção Enzimática , Fragmentos Fc das Imunoglobulinas/metabolismo , Proteínas Recombinantes de Fusão/sangue , Semaforinas/metabolismo , Animais , Anticorpos/imunologia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Semaforinas/genética , Semaforinas/imunologia , Fatores de Tempo
18.
MAbs ; 4(2): 243-55, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22453096

RESUMO

Subcutaneous (SC) delivery is a common route of administration for therapeutic monoclonal antibodies (mAbs) with pharmacokinetic (PK)/pharmacodynamic (PD) properties requiring long-term or frequent drug administration. An ideal in vivo preclinical model for predicting human PK following SC administration may be one in which the skin and overall physiological characteristics are similar to that of humans. In this study, the PK properties of a series of therapeutic mAbs following intravenous (IV) and SC administration in Göttingen minipigs were compared with data obtained previously from humans. The present studies demonstrated: (1) minipig is predictive of human linear clearance; (2) the SC bioavailabilities in minipigs are weakly correlated with those in human; (3) minipig mAb SC absorption rates are generally higher than those in human and (4) the SC bioavailability appears to correlate with systemic clearance in minipigs. Given the important role of the neonatal Fc-receptor (FcRn) in the PK of mAbs, the in vitro binding affinities of these IgGs against porcine, human and cynomolgus monkey FcRn were tested. The result showed comparable FcRn binding affinities across species. Further, mAbs with higher isoelectric point tended to have faster systemic clearance and lower SC bioavailability in both minipig and human. Taken together, these data lend increased support for the use of the minipig as an alternative predictive model for human IV and SC PK of mAbs.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/farmacocinética , Modelos Imunológicos , Administração Intravenosa , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Injeções Subcutâneas , Masculino , Suínos , Porco Miniatura
19.
Mol Cancer Ther ; 11(3): 752-62, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22222630

RESUMO

Both human epidermal growth factor receptor 2 (HER-2/neu) and VEGF overexpression correlate with aggressive phenotypes and decreased survival among breast cancer patients. Concordantly, the combination of trastuzumab (anti-HER2) with bevacizumab (anti-VEGF) has shown promising results in preclinical xenograft studies and in clinical trials. However, despite the known antiangiogenic mechanism of anti-VEGF antibodies, relatively little is known about their effects on the pharmacokinetics and tissue distribution of other antibodies. This study aimed to measure the disposition properties, with a particular emphasis on tumor uptake, of trastuzumab in the presence or absence of anti-VEGF. Radiolabeled trastuzumab was administered alone or in combination with an anti-VEGF antibody to mice bearing HER2-expressing KPL-4 breast cancer xenografts. Biodistribution, autoradiography, and single-photon emission computed tomography-X-ray computed tomography imaging all showed that anti-VEGF administration reduced accumulation of trastuzumab in tumors despite comparable blood exposures and similar distributions in most other tissues. A similar trend was also observed for an isotype-matched IgG with no affinity for HER2, showing reduced vascular permeability to macromolecules. Reduced tumor blood flow (P < 0.05) was observed following anti-VEGF treatment, with no significant differences in the other physiologic parameters measured despite immunohistochemical evidence of reduced vascular density. In conclusion, anti-VEGF preadministration decreased tumor uptake of trastuzumab, and this phenomenon was mechanistically attributed to reduced vascular permeability and blood perfusion. These findings may ultimately help inform dosing strategies to achieve improved clinical outcomes.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/química , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Humanos , Imuno-Histoquímica , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Camundongos , Camundongos Nus , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Trastuzumab , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Br J Pharmacol ; 166(1): 368-77, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22074316

RESUMO

BACKGROUND AND PURPOSE: Neuropilin-1 (NRP1) is a VEGF receptor that is widely expressed in normal tissues and is involved in tumour angiogenesis. MNRP1685A is a rodent and primate cross-binding human monoclonal antibody against NRP1 that exhibits inhibition of tumour growth in NPR1-expressing preclinical models. However, widespread NRP1 expression in normal tissues may affect MNRP1685A tumour uptake. The objective of this study was to assess MNRP1685A biodistribution in tumour-bearing mice to understand the relationships between dose, non-tumour tissue uptake and tumour uptake. EXPERIMENTAL APPROACH: Non-tumour-bearing mice were given unlabelled MNRP1685A at 10 mg·kg(-1) . Tumour-bearing mice were given (111) In-labelled MNRP1685A along with increasing amounts of unlabelled antibody. Blood and tissues were collected from all animals to determine drug concentration (unlabelled) or radioactivity level (radiolabelled). Some animals were imaged using single photon emission computed tomography - X-ray computed tomography. KEY RESULTS: MNRP1685A displayed faster serum clearance than pertuzumab, indicating that target binding affected MNRP1685A clearance. I.v. administration of (111) In-labelled MNRP1685A to tumour-bearing mice yielded minimal radioactivity in the plasma and tumour, but high levels in the lungs and liver. Co-administration of unlabelled MNRP1685A with the radiolabelled antibody was able to competitively block lungs and liver radioactivity uptake in a dose-dependent manner while augmenting plasma and tumour radioactivity levels. CONCLUSIONS AND IMPLICATIONS: These results indicate that saturation of non-tumour tissue uptake is required in order to achieve tumour uptake and acceptable exposure to antibody. Utilization of a rodent and primate cross-binding antibody allows for translation of these results to clinical settings.


Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Neuropilina-1/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Radioisótopos de Índio/química , Radioisótopos do Iodo/química , Camundongos , Camundongos Nus , Imagem Multimodal/métodos , Neoplasias Experimentais , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA