Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 210(4): 420-430, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36603035

RESUMO

Infection with the protozoan parasite Trypanosoma cruzi elicits substantial CD8+ T cell responses that disproportionately target epitopes encoded in the large trans-sialidase (TS) gene family. Within the C57BL/6 infection model, a significant proportion (30-40%) of the T. cruzi-specific CD8+ T cell response targets two immunodominant TS epitopes, TSKb18 and TSKb20. However, both TS-specific CD8+ T cell responses are dispensable for immune control, and TS-based vaccines have no demonstrable impact on parasite persistence, a determinant of disease. Besides TS, the specificity and protective capacity of CD8+ T cells that mediate immune control of T. cruzi infection are unknown. With the goal of identifying alternative CD8+ T cell targets, we designed and screened a representative set of genome-wide, in silico-predicted epitopes. Our screen identified a previously uncharacterized, to our knowledge, T cell epitope MUCKb25, found within mucin family proteins, the third most expanded large gene family in T. cruzi. The MUCKb25-specific response was characterized by delayed kinetics, relative to TS-specific responses, and extensive cross-reactivity with a large number of endogenous epitope variants. Similar to TS-specific responses, the MUCKb25 response was dispensable for control of the infection, and vaccination to generate MUCK-specific CD8+ T cells failed to confer protection. The lack of protection by MUCK vaccination was partly attributed to the fact that MUCKb25-specific T cells exhibit limited recognition of T. cruzi-infected host cells. Overall, these results indicate that the CD8+ T cell compartment in many T. cruzi-infected mice is occupied by cells with minimal apparent effector potential.


Assuntos
Doença de Chagas , Vacinas Protozoárias , Trypanosoma cruzi , Camundongos , Animais , Glicosilfosfatidilinositóis , Mucinas , Sinais Direcionadores de Proteínas , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Epitopos Imunodominantes
2.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114029

RESUMO

Trypanosomatids (order Kinetoplastida), including the human pathogens Trypanosoma cruzi (agent of Chagas disease), Trypanosoma brucei, (African sleeping sickness), and Leishmania (leishmaniasis), affect millions of people and animals globally. T. cruzi is considered one of the least studied and most poorly understood tropical disease-causing parasites, in part because of the relative lack of facile genetic engineering tools. This situation has improved recently through the application of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) technology, but a number of limitations remain, including the toxicity of continuous Cas9 expression and the long drug marker selection times. In this study, we show that the delivery of ribonucleoprotein (RNP) complexes composed of recombinant Cas9 from Staphylococcus aureus (SaCas9), but not from the more routinely used Streptococcus pyogenes Cas9 (SpCas9), and in vitro-transcribed single guide RNAs (sgRNAs) results in rapid gene edits in T. cruzi and other kinetoplastids at frequencies approaching 100%. The highly efficient genome editing via SaCas9/sgRNA RNPs was obtained for both reporter and endogenous genes and observed in multiple parasite life cycle stages in various strains of T. cruzi, as well as in T. brucei and Leishmania major RNP complex delivery was also used to successfully tag proteins at endogenous loci and to assess the biological functions of essential genes. Thus, the use of SaCas9 RNP complexes for gene editing in kinetoplastids provides a simple, rapid, and cloning- and selection-free method to assess gene function in these important human pathogens.IMPORTANCE Protozoan parasites remain some of the highest-impact human and animal pathogens, with very limited treatment and prevention options. The development of improved therapeutics and vaccines depends on a better understanding of the unique biology of these organisms, and understanding their biology, in turn, requires the ability to track and manipulate the products of genes. In this work, we describe new methods that are available to essentially any laboratory and applicable to any parasite isolate for easily and rapidly editing the genomes of kinetoplastid parasites. We demonstrate that these methods provide the means to quickly assess function, including that of the products of essential genes and potential targets of drugs, and to tag gene products at their endogenous loci. This is all achieved without gene cloning or drug selection. We expect this advance to enable investigations, especially in Trypanosoma cruzi and Leishmania spp., that have eluded investigators for decades.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Ribonucleoproteínas/genética , Trypanosomatina/genética , Técnicas de Inativação de Genes , Genes de Protozoários , Leishmania major/genética , Estágios do Ciclo de Vida , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Trypanosomatina/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA