RESUMO
Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.
Assuntos
Calmodulina , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Calmodulina/química , Mutação , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.
Assuntos
Aciltransferases/genética , Grelina/análogos & derivados , Grelina/genética , Hipocampo/metabolismo , Proteínas de Membrana/genética , Doença de Parkinson/genética , Paralisia Supranuclear Progressiva/genética , Aciltransferases/deficiência , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Grelina/metabolismo , Hipocampo/patologia , Humanos , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Ratos , Transdução de Sinais , Memória Espacial/fisiologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologiaRESUMO
There is a close relationship between cognition and nutritional status, however, the mechanisms underlying this relationship require elucidation. The stomach hormone, ghrelin, which is released during food restriction, provides a link between circulating energy state and adaptive brain function. The maintenance of such homeostatic systems is essential for an organism to thrive and survive, and accumulating evidence points to ghrelin being key in promoting adult hippocampal neurogenesis and memory. Aberrant neurogenesis is linked to cognitive decline in ageing and neurodegeneration. Therefore, identifying endogenous metabolic factors that regulate new adult-born neurone formation is an important objective in understanding the link between nutritional status and central nervous system (CNS) function. Here, we review current developments in our understanding of ghrelin's role in regulating neurogenesis and memory function.
Assuntos
Grelina/metabolismo , Animais , Restrição Calórica , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismoRESUMO
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR-eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl-ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl-ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse-chase approach, we show that peripheral treatment of adult rats with acyl-ghrelin did not increase the number of new adult-born neurones in the granule cell layer of the OB. These data demonstrate that acyl-ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult-born cells in the OB. Overnight CR induced c-Fos expression in new adult-born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re-feeding. These effects were not present in ghrelin-/- mice, suggesting that adult-born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re-feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult-born OB cells are activated by CR in a ghrelin-dependent manner.
Assuntos
Restrição Calórica , Grelina/fisiologia , Ventrículos Laterais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Receptores de Grelina/fisiologia , Animais , Grelina/administração & dosagem , Ventrículos Laterais/efeitos dos fármacos , Masculino , Camundongos Knockout , Células-Tronco Neurais , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Bulbo Olfatório/efeitos dos fármacos , Receptores de Grelina/genéticaRESUMO
Sperm-specific phospholipase C zeta (PLCζ) is widely considered to be the physiological stimulus that evokes intracellular calcium (Ca2+) oscillations that are essential for the initiation of egg activation during mammalian fertilisation. A recent genetic study reported a male infertility case that was directly associated with a point mutation in the PLCζ C2 domain, where an isoleucine residue had been substituted with a phenylalanine (I489F). Here, we have analysed the effect of this mutation on the in vivo Ca2+ oscillation-inducing activity and the in vitro biochemical properties of human PLCζ. Microinjection of cRNA or recombinant protein corresponding to PLCζI489F mutant at physiological concentrations completely failed to cause Ca2+ oscillations and trigger development. However, this infertile phenotype could be effectively rescued by microinjection of relatively high (non-physiological) amounts of recombinant mutant PLCζI489F protein, leading to Ca2+ oscillations and egg activation. Our in vitro biochemical analysis suggested that the PLCζI489F mutant displayed similar enzymatic properties, but dramatically reduced binding to PI(3)P and PI(5)P-containing liposomes compared with wild-type PLCζ. Our findings highlight the importance of PLCζ at fertilisation and the vital role of the C2 domain in PLCζ function, possibly due to its novel binding characteristics.
Assuntos
Domínios C2 , Cálcio/metabolismo , Infertilidade Masculina/genética , Fosfoinositídeo Fosfolipase C/química , Mutação Puntual , Substituição de Aminoácidos , Animais , Sinalização do Cálcio , Bovinos , Feminino , Fertilização , Expressão Gênica , Humanos , Isoleucina/química , Isoleucina/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo , Ligação Proteica , RNA Complementar/administração & dosagem , RNA Complementar/genética , RNA Complementar/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologiaRESUMO
STUDY QUESTION: Is it possible to improve clinical visualization of phospholipase C zeta (PLCζ) as a diagnostic marker of sperm oocyte activation capacity and male fertility? SUMMARY ANSWER: Poor PLCζ visualization efficacy using current protocols may be due to steric or conformational occlusion of native PLCζ, hindering antibody access, and is significantly enhanced using antigen unmasking/retrieval (AUM) protocols. WHAT IS KNOWN ALREADY: Mammalian oocyte activation is mediated via a series of intracellular calcium (Ca2+) oscillations induced by sperm-specific PLCζ. PLCζ represents not only a potential clinical therapeutic in cases of oocyte activation deficiency but also a diagnostic marker of sperm fertility. However, there are significant concerns surrounding PLCζ antibody specificity and detection protocols. STUDY DESIGN, SIZE DURATION: Two PLCζ polyclonal antibodies, with confirmed PLCζ specificity, were employed in mouse, porcine and human sperm. Experiments evaluated PLCζ visualization efficacy, and whether AUM improved this. Antibodies against two sperm-specific proteins [post-acrosomal WW-binding protein (PAWP) and acrosin] were used as controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Aldehyde- and methanol-fixed sperm were subject to immunofluorescence analysis following HCl exposure (pH = 0.1-0.5), acid Tyrode's solution exposure (pH = 2.5) or heating in 10 mM sodium citrate solution (pH = 6.0). Fluorescence intensity of at least 300 cells was recorded for each treatment, with three independent repeats. MAIN RESULTS AND THE ROLE OF CHANCE: Despite high specificity for native PLCζ following immunoblotting using epitope-specific polyclonal PLCζ antibodies in mouse, porcine and human sperm, immunofluorescent visualization efficacy was poor. In contrast, sperm markers PAWP and acrosin exhibited relatively impressive results. All methods of AUM on aldehyde-fixed sperm enhanced visualization efficacy for PLCζ compared to visualization efficacy before AUM (P < 0.05 for all AUM interventions), but exerted no significant change upon PAWP or acrosin immunofluorescence following AUM. All methods of AUM enhanced PLCζ visualization efficacy in mouse and human methanol-fixed sperm compared to without AUM (P < 0.05 for all AUM interventions), while no significant change was observed in methanol-fixed porcine sperm before and after. In the absence of aldehyde-induced cross-linkages, such results suggest that poor PLCζ visualization efficacy may be due to steric or conformational occlusion of native PLCζ, hindering antibody access. Importantly, examination of sperm from individual donors revealed that AUM differentially affects observable PLCζ fluorescence, and the proportion of sperm exhibiting detectable PLCζ fluorescence in sperm from different males. LIMITATIONS, REASONS FOR CAUTION: Direct correlation of fertility outcomes with the level of PLCζ in the sperm samples studied was not available. Such analyses would be required in future to determine whether the improved methodology for PLCζ visualization we propose would indeed reflect fertility status. WIDER IMPLICATIONS OF THE FINDINGS: We propose that AUM alters conformational interactions to enhance PLCζ epitope availability and visualization efficacy, supporting prospective application of AUM to reduce misinterpretation in clinical diagnosis of PLCζ-linked male infertility. Our current results suggest that it is perhaps prudent that previous studies investigating links between PLCζ and fertility parameters are re-examined in the context of AUM, and may pave the way for future work to answer significant questions such as how PLCζ appears to be kept in an inactive form in the sperm. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTERESTS: J.K. is supported by a Health Fellowship award from the National Institute for Social Care and Health Research (NISCHR). M.N. is supported by a Marie Curie Intra-European Research Fellowship award. This work was also partly funded by a research grant from Cook Medical Technologies LLC. There are no competing financial interests to declare.
Assuntos
Imunofluorescência/normas , Infertilidade Masculina/enzimologia , Fosfoinositídeo Fosfolipase C/análise , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/enzimologia , Acrosina/genética , Acrosina/imunologia , Animais , Anticorpos/química , Especificidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Biomarcadores/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Expressão Gênica , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Oócitos/citologia , Oócitos/fisiologia , Fosfoinositídeo Fosfolipase C/química , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/imunologia , Ligação Proteica , Conformação Proteica , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/imunologia , Espermatozoides/patologia , Suínos , Fixação de Tecidos/métodosRESUMO
Sperm-specific phospholipase C-ζ (PLCζ) is widely considered to be the physiological stimulus that triggers intracellular Ca(2+) oscillations and egg activation during mammalian fertilization. Although PLCζ is structurally similar to PLCδ1, it lacks a pleckstrin homology domain, and it remains unclear how PLCζ targets its phosphatidylinositol 4,5-bisphosphate (PIP2) membrane substrate. Recently, the PLCδ1 EF-hand domain was shown to bind to anionic phospholipids through a number of cationic residues, suggesting a potential mechanism for how PLCs might interact with their target membranes. Those critical cationic EF-hand residues in PLCδ1 are notably conserved in PLCζ. We investigated the potential role of these conserved cationic residues in PLCζ by generating a series of mutants that sequentially neutralized three positively charged residues (Lys-49, Lys-53, and Arg-57) within the mouse PLCζ EF-hand domain. Microinjection of the PLCζ EF-hand mutants into mouse eggs enabled their Ca(2+) oscillation inducing activities to be compared with wild-type PLCζ. Furthermore, the mutant proteins were purified, and the in vitro PIP2 hydrolysis and binding properties were monitored. Our analysis suggests that PLCζ binds significantly to PIP2, but not to phosphatidic acid or phosphatidylserine, and that sequential reduction of the net positive charge within the first EF-hand domain of PLCζ significantly alters in vivo Ca(2+) oscillation inducing activity and in vitro interaction with PIP2 without affecting its Ca(2+) sensitivity. Our findings are consistent with theoretical predictions provided by a mathematical model that links oocyte Ca(2+) frequency and the binding ability of different PLCζ mutants to PIP2. Moreover, a PLCζ mutant with mutations in the cationic residues within the first EF-hand domain and the XY linker region dramatically reduces the binding of PLCζ to PIP2, leading to complete abolishment of its Ca(2+) oscillation inducing activity.
Assuntos
Membrana Celular/metabolismo , Motivos EF Hand , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Espermatozoides/enzimologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cátions , Feminino , Hidrólise , Lipossomos/química , Masculino , Camundongos , Modelos Teóricos , Mutação , Oócitos/citologia , Ácidos Fosfatídicos/metabolismo , Fosfatidilserinas/metabolismo , Plasmídeos/metabolismo , Ligação ProteicaRESUMO
Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.
Assuntos
Calmodulina/genética , Síndrome do QT Longo/etiologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Taquicardia Ventricular/etiologia , Animais , Cálcio/metabolismo , SuínosRESUMO
Mammalian oocyte activation is mediated by cytosolic calcium (Ca(2+)) oscillations initiated upon delivery of a putative 'sperm factor' by the fertilizing sperm. Previous studies suggest the identity of this sperm factor as the testis-specific phospholipase C-zeta (PLCζ). Recently, a post-acrosomal sheath WW domain-binding protein (PAWP) has been proposed as an alternative sperm factor candidate, following a report that human PAWP protein and cRNA elicited Ca(2+) oscillations in mouse and human oocytes. Those Ca(2+) oscillations were inhibited by a PAWP-derived peptide corresponding to a functional PPGY binding motif. Herein, using a series of human PAWP expression constructs, we demonstrate that both human PAWP protein and cRNA are, in our experiments, unable to elicit Ca(2+) release following microinjection into mouse oocytes. Parallel experiments performed with human PLCζ elicited the characteristic Ca(2+) oscillations present at mammalian fertilization, which produced oocyte activation and embryo development. Furthermore, sperm-induced Ca(2+) oscillations were not inhibited by the PAWP-derived PPGY peptide following in vitro fertilization or intracytoplasmic sperm injection. Thus, the functional disparity with PLCζ leads us to conclude that human PAWP is neither sufficient nor necessary for the Ca(2+) oscillations that initiate mammalian oocyte activation at fertilization.
Assuntos
Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Oócitos/enzimologia , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Plasma Seminal/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Transporte/genética , Células Cultivadas , Feminino , Fertilização in vitro , Técnicas de Transferência de Genes , Humanos , Técnicas de Maturação in Vitro de Oócitos , Masculino , Camundongos , Microinjeções , Oócitos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fosfoinositídeo Fosfolipase C/genética , Proteínas de Plasma Seminal/genética , Injeções de Esperma Intracitoplásmicas , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Fatores de TempoRESUMO
A sperm-specific phospholipase C-zeta (PLCζ) is believed to play an essential role in oocyte activation during mammalian fertilization. Sperm PLCζ has been shown to trigger a prolonged series of repetitive Ca(2+) transients or oscillations in oocytes that precede activation. This remarkable intracellular Ca(2+) signalling phenomenon is a distinctive characteristic observed during in vitro fertilization by sperm. Previous studies have notably observed an apparent differential ability of PLCζ from disparate mammalian species to trigger Ca(2+) oscillations in mouse oocytes. However, the molecular basis and confirmation of the apparent PLCζ species difference in activity remains to be provided. In the present study, we provide direct evidence for the superior effectiveness of human PLCζ relative to mouse PLCζ in generating Ca(2+) oscillations in mouse oocytes. In addition, we have designed and constructed a series of human/mouse PLCζ chimeras to enable study of the potential role of discrete PLCζ domains in conferring the enhanced Ca(2+) signalling potency of human PLCζ. Functional analysis of these human/mouse PLCζ domain chimeras suggests a novel role of the EF-hand domain in the species-specific differences in PLCζ activity. Our empirical observations are compatible with a basic mathematical model for the Ca(2+) dependence of generating cytoplasmic Ca(2+) oscillations in mammalian oocytes by sperm PLCζ.