Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(1): 1-15, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37903545

RESUMO

We present a novel framework enhancing the prediction of whether novel lineage poses the threat of eventually dominating the viral population. The framework is based purely on genomic sequence data, without requiring prior established biological analysis. Its building blocks are sets of coevolving sites in the alignment (motifs), identified via coevolutionary signals. The collection of such motifs forms a relational structure over the polymorphic sites. Motifs are constructed using distances quantifying the coevolutionary coupling of pairs and manifest as coevolving clusters of sites. We present an approach to genomic surveillance based on this notion of relational structure. Our system will issue an alert regarding a lineage, based on its contribution to drastic changes in the relational structure. We then conduct a comprehensive retrospective analysis of the COVID-19 pandemic based on SARS-CoV-2 genomic sequence data in GISAID from October 2020 to September 2022, across 21 lineages and 27 countries with weekly resolution. We investigate the performance of this surveillance system in terms of its accuracy, timeliness, and robustness. Lastly, we study how well each lineage is classified by such a system.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Pandemias , Estudos Retrospectivos , Genômica
2.
J Math Biol ; 86(3): 34, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695949

RESUMO

We propose a novel mathematical paradigm for the study of genetic variation in sequence alignments. This framework originates from extending the notion of pairwise relations, upon which current analysis is based on, to k-ary dissimilarity. This dissimilarity naturally leads to a generalization of simplicial complexes by endowing simplices with weights, compatible with the boundary operator. We introduce the notion of k-stances and dissimilarity complex, the former encapsulating arithmetic as well as topological structure expressing these k-ary relations. We study basic mathematical properties of dissimilarity complexes and show how this approach captures watershed moments of viral dynamics in the context of SARS-CoV-2 and H1N1 flu genomic data.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Humanos , SARS-CoV-2/genética , Alinhamento de Sequência
3.
J Comput Biol ; 28(3): 248-256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275493

RESUMO

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral genome is considered to be relatively stable and the mutations that have been observed and reported thus far are mainly focused on the coding region. This article provides evidence that macrolevel pandemic dynamics, such as social distancing, modulate the genomic evolution of SARS-CoV-2. This view complements the prevalent paradigm that microlevel observables control macrolevel parameters such as death rates and infection patterns. First, we observe differences in mutational signals for geospatially separated populations such as the prevalence of A23404G in CA versus NY and WA. We show that the feedback between macrolevel dynamics and the viral population can be captured employing a transfer entropy framework. Second, we observe complex interactions within mutational clades. Namely, when C14408T first appeared in the viral population, the frequency of A23404G spiked in the subsequent week. Third, we identify a noncoding mutation, G29540A, within the segment between the coding gene of the N protein and the ORF10 gene, which is largely confined to NY (>95%). These observations indicate that macrolevel sociobehavioral measures have an impact on the viral genomics and may be useful for the dashboard-like tracking of its evolution. Finally, despite the fact that SARS-CoV-2 is a genetically robust organism, our findings suggest that we are dealing with a high degree of adaptability. Owing to its ample spread, mutations of unusual form are observed and a high complexity of mutational interaction is exhibited.


Assuntos
COVID-19/virologia , Evolução Molecular , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/transmissão , Biologia Computacional , Frequência do Gene , Comportamentos Relacionados com a Saúde , Política de Saúde , Humanos , Modelos Genéticos , Mutação , Pandemias , Filogenia , Distanciamento Físico , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética
4.
medRxiv ; 2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32511466

RESUMO

Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA