Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645822

RESUMO

Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFß-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.

2.
JCI Insight ; 8(7)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821376

RESUMO

Volumetric muscle loss (VML) is an acute trauma that results in persistent inflammation, supplantation of muscle tissue with fibrotic scarring, and decreased muscle function. The cell types, nature of cellular communication, and tissue locations that drive the aberrant VML response have remained elusive. Herein, we used spatial transcriptomics on a mouse model of VML and observed that VML engenders a unique spatial profibrotic pattern driven by crosstalk between fibrotic and inflammatory macrophages and mesenchymal-derived cells. The dysregulated response impinged on muscle stem cell-mediated repair, and targeting this circuit resulted in increased regeneration and reductions in inflammation and fibrosis. Collectively, these results enhance our understanding of the cellular crosstalk that drives aberrant regeneration and provides further insight into possible avenues for fibrotic therapy exploration.


Assuntos
Músculo Esquelético , Doenças Musculares , Camundongos , Animais , Músculo Esquelético/metabolismo , Doenças Musculares/patologia , Regeneração , Células-Tronco , Perfilação da Expressão Gênica , Fibrose
3.
Diabetes ; 68(1): 45-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30361289

RESUMO

Respiratory dysfunction is a common complication of obesity, conferring cardiovascular morbidity and increased mortality and often necessitating mechanical ventilatory support. While impaired lung expansion in the setting of increased adipose mass and reduced central response to hypercapnia have been implicated as pathophysiological drivers, the impact of obesity on respiratory muscles-in particular, the diaphragm-has not been investigated in detail. Here, we demonstrate that chronic high-fat diet (HFD) feeding impairs diaphragm muscle function, as assessed in vivo by ultrasonography and ex vivo by measurement of contractile force. During an HFD time course, progressive adipose tissue expansion and collagen deposition within the diaphragm parallel contractile deficits. Moreover, intradiaphragmatic fibro-adipogenic progenitors (FAPs) proliferate with long-term HFD feeding while giving rise to adipocytes and type I collagen-depositing fibroblasts. Thrombospondin 1 (THBS1), a circulating adipokine, increases with obesity and induces FAP proliferation. These findings suggest a novel role for FAP-mediated fibro-adipogenic diaphragm remodeling in obesity-associated respiratory dysfunction.


Assuntos
Diafragma/metabolismo , Obesidade/fisiopatologia , Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Adiposidade/fisiologia , Animais , Western Blotting , Células Cultivadas , Colágeno/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Ultrassonografia
4.
Artigo em Inglês | MEDLINE | ID: mdl-29340167

RESUMO

BACKGROUND: Ectopic insulin-like growth factor (IGF)-2 production is a rare complication of an array of epithelial and mesenchymal tumors, and can clinically manifest as life-threatening hypoglycemia. CASE PRESENTATION: A 49-year-old woman with 13-year history of metastatic hemangiopericytoma, previously treated with multiple rounds of chemotherapy and palliative radiation, presented to the emergency department after a hypoglycemic seizure. On arrival, glucose was 18 mg/dL (1.0 mmol/L) and required continuous dextrose infusion for maintenance within normal limits. Insulin was <2.0 µU/mL, C-peptide 0.1 ng/mL, and beta-hydroxybutyrate <0.2 mmol/L. Random cortisol was 21 µg/dL; sulfonylurea screen, and insulin antibodies were negative. IGF-2 level was 1320 ng/mL; IGF-1 was within normal limits and IGF binding protein (BP)-3 suppressed. Dexamethasone, started at 6 mg twice daily, allowed discontinuation of the glucose infusion. Given concern for nocturnal hypoglycemia, and patient interest in steroid-sparing anti-hypoglycemic regimen, she was also started on overnight continuous subcutaneous glucagon infusion via insulin pump. She was discharged with instructions to maintain a diet high in complex carbohydrates during the day, while utilizing glucagon pump at night. She was also started on continuous glucose monitoring system (CGMS) with an alarm to warn of hypoglycemia. Glucagon infusion rate was later titrated based on CGMS readings. Abdominal CT revealed increasing size of a right upper quadrant mass not previously subjected to radiotherapy. After radiation to this area, hypoglycemia improved, allowing further glucagon titration. In parallel, IGF-2 level declined to 380 ng/mL. CONCLUSIONS: Ectopic IGF-2 production is a rare but often fatal complication of many cancers, and should be considered on the differential diagnosis in patients with malignancy and unexplained hypoglycemia. Once hypoglycemia is diagnosed, patients often have end-stage disease. While treatment of the causative tumor is the only definitive intervention, anti-hypoglycemia therapy is a life-saving, temporizing measure. In this case, the patient attained euglycemia and survived 3 months after presentation before ultimately succumbing to other malignancy-related complications. Given efficacy in management of hypoglycemia while awaiting definitive tumor-directed therapy, we submit nighttime subcutaneous glucagon infusion and CGMS are valuable additions to the physician's armamentarium in managing this condition.

5.
Clin Endocrinol (Oxf) ; 86(5): 698-707, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28199729

RESUMO

CONTEXT: Partial lipodystrophy (PL) is associated with metabolic co-morbidities but may go undiagnosed as the disease spectrum is not fully described. OBJECTIVE: The objective of the study was to define disease spectrum in PL using genetic, clinical (historical, morphometric) and laboratory characteristics. DESIGN: Cross-sectional evaluation. PARTICIPANTS: Twenty-three patients (22 with familial, one acquired, 78·3% female, aged 12-64 years) with PL and non-alcoholic fatty liver disease (NAFLD). MEASUREMENTS: Genetic, clinical and laboratory characteristics, body composition indices, liver fat content by magnetic resonance imaging (MRI), histopathological and immunofluorescence examinations of liver biopsies. RESULTS: Seven patients displayed heterozygous pathogenic variants in LMNA. Two related patients had a heterozygous, likely pathogenic novel variant of POLD1 (NM002691·3: c.3199 G>A; p.E1067K). Most patients had high ratios (>1·5) of percentage fat trunk to percentage fat legs (FMR) when compared to reference normals. Liver fat quantified using MR Dixon method was high (11·3 ± 6·3%) and correlated positively with haemoglobin A1c and triglycerides while leg fat by dual-energy X-ray absorptiometry (DEXA) correlated negatively with triglycerides. In addition to known metabolic comorbidities; chronic pain (78·3%), hypertension (56·5%) and mood disorders (52·2%) were highly prevalent. Mean NAFLD Activity Score (NAS) was 5 ± 1 and 78·3% had fibrosis. LMNA-immunofluorescence staining from select patients (including one with the novel POLD1 variant) showed a high degree of nuclear atypia and disorganization. CONCLUSIONS: Partial lipodystrophy is a complex multi-system disorder. Metabolic parameters correlate negatively with extremity fat and positively with liver fat. DEXA-based FMR may prove useful as a diagnostic tool. Nuclear disorganization and atypia may be a common biomarker even in the absence of pathogenic variants in LMNA.


Assuntos
Composição Corporal , Lipodistrofia Parcial Familiar/diagnóstico , Lipodistrofia/diagnóstico , Adolescente , Adulto , Criança , Estudos Transversais , Feminino , Humanos , Lipodistrofia/genética , Lipodistrofia/metabolismo , Lipodistrofia/fisiopatologia , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Lipodistrofia Parcial Familiar/fisiopatologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Aging (Albany NY) ; 8(1): 178-91, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26837433

RESUMO

Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.


Assuntos
Envelhecimento/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos Peritoneais/metabolismo , Paniculite/metabolismo , Receptores de Grelina/metabolismo , Fatores Etários , Envelhecimento/genética , Animais , Anti-Inflamatórios/farmacologia , Plasticidade Celular , Predisposição Genética para Doença , Antagonistas de Hormônios/farmacologia , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Gordura Intra-Abdominal/efeitos dos fármacos , Lipólise , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Paniculite/genética , Paniculite/prevenção & controle , Fenótipo , Células RAW 264.7 , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/deficiência , Receptores de Grelina/genética
7.
FASEB J ; 29(8): 3537-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953849

RESUMO

Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Diabetes Mellitus Experimental/patologia , Hiperglicemia/fisiopatologia , Resistência à Insulina/fisiologia , Macrófagos/patologia , Proinsulina/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/métodos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Sci Transl Med ; 5(213): 213ra164, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285483

RESUMO

Viral infections, such as HIV, have been linked to obesity, but mechanistic evidence that they cause adipose dysfunction in vivo is lacking. We investigated a pathogenic role for the HIV-1 accessory protein viral protein R (Vpr), which can coactivate the glucocorticoid receptor (GR) and co-repress peroxisome proliferator-activated receptor γ (PPARγ) in vitro, in HIV-associated adipose dysfunction. Vpr circulated in the blood of most HIV-infected patients tested, including those on antiretroviral therapy (ART) with undetectable viral load. Vpr-mediated mechanisms were dissected in vivo using mouse models expressing the Vpr transgene in adipose tissues and liver (Vpr-Tg) or infused with synthetic Vpr. Both models demonstrated accelerated whole-body lipolysis, hyperglycemia and hypertriglyceridemia, and tissue-specific findings. Fat depots in these mice had diminished mass, macrophage infiltration, and blunted PPARγ target gene expression but increased GR target gene expression. In liver, we observed blunted PPARα target gene expression, steatosis with decreased adenosine monophosphate-activated protein kinase activity, and insulin resistance. Similar to human HIV-infected patients, Vpr circulated in the serum of Vpr-Tg mice. Vpr blocked differentiation in preadipocytes through cell cycle arrest, whereas in mature adipocytes, it increased lipolysis with reciprocally altered association of PPARγ and GR with their target promoters. These results delineate a distinct pathogenic sequence: Vpr, released from HIV-1 in tissue reservoirs after ART, can disrupt PPAR/GR co-regulation and cell cycle control to produce adipose dysfunction and hepatosteatosis. Confirmation of these mechanisms in HIV patients could lead to targeted treatment of the metabolic complications with Vpr inhibitors, GR antagonists, or PPARγ/PPARα agonists.


Assuntos
Produtos do Gene vpr/metabolismo , HIV-1/metabolismo , Receptores de Glucocorticoides/metabolismo , Células 3T3-L1 , Animais , Cromatografia em Camada Fina , Ensaio de Imunoadsorção Enzimática , Produtos do Gene vpr/genética , HIV-1/genética , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Transgênicos , PPAR alfa/agonistas , PPAR alfa/metabolismo , PPAR gama/metabolismo , Receptores de Glucocorticoides/agonistas
9.
J Obes ; 2013: 616193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577240

RESUMO

The innate immune system provides organisms with rapid and well-coordinated protection from foreign pathogens. However, under certain conditions of metabolic dysfunction, components of the innate immune system may be activated in the absence of external pathogens, leading to pathologic consequences. Indeed, there appears to be an intimate relationship between metabolic diseases and immune dysfunction; for example, macrophages are prime players in the initiation of a chronic inflammatory state in obesity which leads to insulin resistance. In response to increases in free fatty acid release from obese adipose depots, M1-polarized macrophages infiltrate adipose tissues. These M1 macrophages trigger inflammatory signaling and stress responses within cells that signal through JNK or IKK ß pathways, leading to insulin resistance. If overnutrition persists, mechanisms that counteract inflammation (such as M2 macrophages and PPAR signaling) are suppressed, and the inflammation becomes chronic. Although macrophages are a principal constituent of obese adipose tissue inflammation, other components of the immune system such as lymphocytes and mast cells also contribute to the inflammatory cascade. Thus it is not merely an increased mass of adipose tissue that directly leads to attenuation of insulin action, but rather adipose tissue inflammation activated by the immune system in obese individuals that leads to insulin resistance.


Assuntos
Sistema Imunitário/fisiopatologia , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Tecido Adiposo/fisiopatologia , Morte Celular/imunologia , Doença Crônica , Ácidos Graxos não Esterificados/metabolismo , Humanos , Inflamação/imunologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/fisiopatologia , Lipólise , Macrófagos/imunologia , Macrófagos/fisiologia , Transdução de Sinais
10.
Nature ; 490(7418): 116-20, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22885699

RESUMO

Burkitt's lymphoma (BL) can often be cured by intensive chemotherapy, but the toxicity of such therapy precludes its use in the elderly and in patients with endemic BL in developing countries, necessitating new strategies. The normal germinal centre B cell is the presumed cell of origin for both BL and diffuse large B-cell lymphoma (DLBCL), yet gene expression analysis suggests that these malignancies may use different oncogenic pathways. BL is subdivided into a sporadic subtype that is diagnosed in developed countries, the Epstein-Barr-virus-associated endemic subtype, and an HIV-associated subtype, but it is unclear whether these subtypes use similar or divergent oncogenic mechanisms. Here we used high-throughput RNA sequencing and RNA interference screening to discover essential regulatory pathways in BL that cooperate with MYC, the defining oncogene of this cancer. In 70% of sporadic BL cases, mutations affecting the transcription factor TCF3 (E2A) or its negative regulator ID3 fostered TCF3 dependency. TCF3 activated the pro-survival phosphatidylinositol-3-OH kinase pathway in BL, in part by augmenting tonic B-cell receptor signalling. In 38% of sporadic BL cases, oncogenic CCND3 mutations produced highly stable cyclin D3 isoforms that drive cell cycle progression. These findings suggest opportunities to improve therapy for patients with BL.


Assuntos
Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Genômica , Terapia de Alvo Molecular , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Ciclo Celular , Ciclina D3/genética , Ciclina D3/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Genes myc/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
11.
PLoS One ; 7(8): e42915, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912762

RESUMO

The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.


Assuntos
Ácidos e Sais Biliares/biossíntese , Doenças Cardiovasculares/etiologia , Colesterol/metabolismo , Regulação da Expressão Gênica/genética , Homeostase/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Compostos Azo , Ácidos e Sais Biliares/análise , Western Blotting , Colesterol/sangue , Fezes/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Camundongos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Clin Cell Immunol ; Suppl 9(2): 1-7, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-23828737

RESUMO

Since its discovery in 2000, IL-21 has been shown to play critical roles in the regulation of both innate and adaptive immune responses. IL-21 is produced predominantly by multiple effector CD4+ T-cell types [T helper 17 (Th17), follicular helper T (TFH), and other activated CD4+ cells] and NKT cells. In addition to T cell receptor (TCR) signals, the production of IL-21 by activated CD4+ T cells is intricately regulated by various extrinsic factors and intrinsic molecules, such as IL-6, IL-21, ICOS, Stat3, IRF4, and Batf. Because IL-21 receptor (IL-21R) is broadly expressed on T, B, NK, and dentritic cells (DCs), IL-21 signaling via Jak-Stat and other pathways has direct pleiotropic effects on their proliferation, differentiation, and effector function. For instance, while Th17 and TFH cells produce IL-21, IL-21 also facilitates the development of these cells. IL-21-producing TFH cells are important for the generation and maintenance of germinal centers, and control the differentiation of germinal center B cells and immunoglobulin production. Thus, IL-21R deficiency or IL-21 neutralization with IL-21R-Fc fusion protein prevents B cell-mediated autoimmunity in lupus-prone BXSB.B6-Yaa+ or MRL-Faslpr mouse models, respectively. IL-21 also enhances expansion and cytotoxicity of CD8+ effector T cells. During chronic lymphocytic choriomeningitis viral infection, chronic IL-21 production by antigen-specific CD4+ T cells is needed to sustain CD8+ T cell function for viral control. IL-21 is also required for the development of T cell-mediated type 1 diabetes in NOD mice, possibly through sustaining effector T cell function in a similar manner. Recently, two papers have shown that IL-21R-Fc prevents both auto- and allo-immune responses after islet transplantation. A timely discussion is thus needed to address the immune actions of IL-21 as well as the therapeutic potential of targeting IL-21 in transplantation.

13.
Aging Cell ; 10(6): 996-1010, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21895961

RESUMO

Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Obesidade/metabolismo , Receptores de Grelina/deficiência , Transdução de Sinais/genética , Adiposidade/genética , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/prevenção & controle , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Grelina/genética , Grelina/metabolismo , Humanos , Resistência à Insulina/genética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/prevenção & controle , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Termogênese/fisiologia , Proteína Desacopladora 1
14.
PLoS One ; 5(10): e13463, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20976160

RESUMO

BACKGROUND: While hyperglycemia-induced oxidative stress damages peripheral neurons, technical limitations have, in part, prevented in vivo studies to determine the effect of hyperglycemia on the neurons in the central nervous system (CNS). While olfactory dysfunction is indicated in diabetes, the effect of hyperglycemia on olfactory receptor neurons (ORNs) remains unknown. In this study, we utilized manganese enhanced MRI (MEMRI) to assess the impact of hyperglycemia on axonal transport rates in ORNs. We hypothesize that (i) hyperglycemia induces oxidative stress and is associated with reduced axonal transport rates in the ORNs and (ii) hyperglycemia-induced oxidative stress activates the p38 MAPK pathway in association with phosphorylation of tau protein leading to the axonal transport deficits. RESEARCH DESIGN AND METHODS: T(1)-weighted MEMRI imaging was used to determine axonal transport rates post-streptozotocin injection in wildtype (WT) and superoxide dismutase 2 (SOD2) overexpressing C57Bl/6 mice. SOD2 overexpression reduces mitochondrial superoxide load. Dihydroethidium staining was used to quantify the reactive oxygen species (ROS), specifically, superoxide (SO). Protein and gene expression levels were determined using western blotting and Q-PCR analysis, respectively. RESULTS: STZ-treated WT mice exhibited significantly reduced axonal transport rates and significantly higher levels of ROS, phosphorylated p38 MAPK and tau protein as compared to the WT vehicle treated controls and STZ-treated SOD2 mice. The gene expression levels of p38 MAPK and tau remained unchanged. CONCLUSION: Increased oxidative stress in STZ-treated WT hyperglycemic mice activates the p38 MAPK pathway in association with phosphorylation of tau and attenuates axonal transport rates in the olfactory system. In STZ-treated SOD-overexpressing hyperglycemic mice in which superoxide levels are reduced, these deficits are reversed.


Assuntos
Axônios , Hiperglicemia/metabolismo , Estresse Oxidativo , Animais , Sequência de Bases , Primers do DNA , Imageamento por Ressonância Magnética , Camundongos , Neurônios Receptores Olfatórios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Endocrinology ; 150(11): 4863-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19819964

RESUMO

Insulin deficiency in type 1 diabetes leads to disruptions in glucose, lipid, and ketone metabolism with resultant hyperglycemia, hyperlipidemia, and ketonemia. Exogenous insulin and hepatic insulin gene therapy cannot mimic the robust glucose-stimulated insulin secretion (GSIS) from native pancreatic islets. Gene therapy of streptozotocin-diabetic mice with neurogenin 3 (Ngn3) and betacellulin (Btc) leads to the induction of periportal oval cell-derived neo-islets that exhibit GSIS. We hence hypothesized that this gene therapy regimen may lead to a complete correction of the glucose and lipid metabolic abnormalities associated with insulin deficiency; we further hypothesized that the neo-islets formed in response to Ngn3-Btc gene delivery may display an ultrastructure and transcription profile similar to that of pancreatic islets. We injected streptozotocin-diabetic mice with helper-dependent adenoviral vectors carrying Ngn3 and Btc, which restored GSIS and reversed hyperglycemia in these animals. The treatment also normalized hepatic glucose secretion and reversed ketonemia. Furthermore, it restored hepatic glycogen content and reinstated hepatic lipogenesis-related gene transcripts back to nondiabetic levels. By transmission electron microscopy, the neo-islets displayed electron-dense granules that were similar in appearance to those in pancreatic islets. Finally, using RNA obtained by laser capture microdissection of the periportal neo-islets and normal pancreatic islets, we found that the neo-islets and pancreatic islets exhibited a very similar transcription profile on microarray-based transcriptome analysis. Taken together, this indicates that Ngn3-Btc gene therapy corrects the underlying dysregulated glucose and lipid metabolism in insulin-deficient diabetic mice by inducing neo-islets in the liver that are similar to pancreatic islets in structure and gene expression profile.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Terapia Genética , Insulina/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Proteínas do Tecido Nervoso/uso terapêutico , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Betacelulina , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
16.
J Comp Neurol ; 494(1): 179-89, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16304686

RESUMO

The balance between inhibitory and excitatory amino acid neurotransmitters contributes to the control of normal functioning of the auditory brainstem. Changes in the level of neuronal activity within the auditory brainstem pathways influence the balance between inhibition and excitation. Activity-dependent plasticity in the auditory pathways can be studied by creating a large decrease in activity through peripheral deafening. Deafness-related decreases in GABA have previously been shown in the inferior colliculus. However, glycine is a more prevalent inhibitory transmitter in the mature superior olivary complex (SOC). The present study therefore examined if there were deafness-related changes in glycine in the SOC using postembedding immunocytochemistry. Animals were bilaterally deafened by an intrascalar injection of neomycin. Five nuclei in the SOC, the lateral superior olive (LSO), superior paraolivary nucleus (SPoN), and the medial, lateral, and ventral nuclei of the trapezoid body (MNTB, LNTB, and VNTB) were examined 14 days following the deafening and compared to normal hearing age-matched controls. The LSO and SPoN were divided into high and low frequency regions. The number of glycine immunoreactive puncta on the somata of principal cells showed significant decreases in all regions assessed, with changes ranging from 50% in the VNTB to 23% in the LSO.


Assuntos
Vias Auditivas/metabolismo , Surdez/metabolismo , Glicina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Núcleo Olivar/patologia , Animais , Vias Auditivas/patologia , Tamanho Celular , Surdez/patologia , Diagnóstico por Imagem/métodos , Feminino , Imuno-Histoquímica/métodos , Núcleo Olivar/metabolismo , Ratos , Ratos Sprague-Dawley
17.
J Neurosci Res ; 81(1): 102-9, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15929063

RESUMO

There is increasing evidence of activity-related plasticity in auditory pathways. The present study examined the effects of decreased activity on immunolocalization of the inhibitory neurotransmitter glycine in the cochlear nucleus of the rat after bilateral cochlear ablation. Specifically, glycine-immunoreactive puncta adjacent to somatic profiles were compared in normal hearing animals and animals deafened for 14 days. The number of glycine-immunoreactive puncta surrounding somatic profiles of spherical and globular bushy cells, glycine-immunoreactive type I stellate multipolar cells, radiate neurons (type II stellate multipolar cells), and fusiform cells decreased significantly. In addition, the number of glycine immunopositive tuberculoventral (vertical or corn) cells in the deep layer of the dorsal cochlear nucleus also decreased significantly. These results suggest that decreased inhibition reported in cochlear nucleus after deafness may be due to decreases in glycine.


Assuntos
Vias Auditivas/metabolismo , Cóclea/inervação , Núcleo Coclear/metabolismo , Glicina/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Vias Auditivas/citologia , Cóclea/fisiologia , Nervo Coclear/citologia , Nervo Coclear/metabolismo , Núcleo Coclear/citologia , Surdez/metabolismo , Denervação , Feminino , Imuno-Histoquímica , Ratos , Ratos Sprague-Dawley , Privação Sensorial/fisiologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA