Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Auton Neurosci ; 254: 103182, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805791

RESUMO

Rodent studies demonstrated specialized sodium chloride (NaCl) sensing neurons in the circumventricular organs, which mediate changes in sympathetic nerve activity, arginine vasopressin, thirst, and blood pressure. However, the neural pathways involved in NaCl sensing in the human brain are incompletely understood. The purpose of this pilot study was to determine if acute hypernatremia alters the functional connectivity of NaCl-sensing regions of the brain in healthy young adults. Resting-state fMRI scans were acquired in 13 participants at baseline and during a 30 min hypertonic saline infusion (HSI). We used a seed-based approach to analyze the data, focusing on the subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) as regions of interest (ROIs). Blood chemistry and perceived thirst were assessed pre- and post-infusion. As expected, serum sodium increased from pre- to post-infusion in the HSI group. The primary finding of this pilot study was that the functional connectivity between the SFO and a cluster within the OVLT increased from baseline to the late-phase of the HSI. Bidirectional connectivity changes were found with cortical regions, with some regions showing increased connectivity with sodium-sensing regions while others showed decreased connectivity. Furthermore, the functional connectivity between the SFO and the posterior cingulate cortex (a control ROI) did not change from baseline to the late-phase of the HSI. This finding indicates a distinct response within the NaCl sensing network in the human brain specifically related to acute hypernatremia that will need to be replicated in large-scale studies.


Assuntos
Hipernatremia , Imageamento por Ressonância Magnética , Humanos , Projetos Piloto , Hipernatremia/fisiopatologia , Masculino , Feminino , Adulto , Adulto Jovem , Solução Salina Hipertônica/farmacologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Órgão Subfornical/efeitos dos fármacos , Órgão Subfornical/fisiologia , Organum Vasculosum/fisiologia , Organum Vasculosum/fisiopatologia , Sede/fisiologia , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia
2.
Front Neurol ; 14: 1278065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965163

RESUMO

Background: Research shows that individuals with Parkinson's disease (PD) who have a postural instability and gait difficulties (PIGD) subtype have a faster disease progression compared to those with a tremor dominant (TD) subtype. Nevertheless, our understanding of the structural brain changes contributing to these clinical differences remains limited, primarily because many brain imaging techniques are only capable of detecting changes in the later stages of the disease. Objective: Free water (FW) has emerged as a robust progression marker in several studies, showing increased values in the posterior substantia nigra that predict symptom worsening. Here, we examined longitudinal FW changes in TD and PIGD across multiple brain regions. Methods: Participants were TD and PIGD enrolled in the Parkinson's Progression Marker Initiative (PPMI) study who underwent diffusion MRI at baseline and 2 years later. FW changes were quantified for regions of interest (ROI) within the basal ganglia, thalamus, brainstem, and cerebellum. Results: Baseline FW in all ROIs did not differ between groups. Over 2 years, PIGD had a greater percentage increase in FW in the putamen, globus pallidus, and cerebellar lobule V. A logistic regression model incorporating percent change in motor scores and FW in these brain regions achieved 91.4% accuracy in discriminating TD and PIGD, surpassing models based solely on clinical measures (74.3%) or imaging (76.1%). Conclusion: The results further suggest the use of FW to study disease progression in PD and provide insight into the differential course of brain changes in early-stage PD subtypes.

4.
Neuroimage Clin ; 38: 103399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37058977

RESUMO

BACKGROUND: Despite the significant impact of lower limb symptoms on everyday life activities in Parkinson's disease (PD), knowledge of the neural correlates of lower limb deficits is limited. OBJECTIVE: We ran an fMRI study to investigate the neural correlates of lower limb movements in individuals with and without PD. METHODS: Participants included 24 PD and 21 older adults who were scanned while performing a precisely controlled isometric force generation task by dorsiflexing their ankle. A novel MRI-compatible ankle dorsiflexion device that limits head motion during motor tasks was used. The PD were tested on their more affected side, whereas the side in controls was randomized. Importantly, PD were tested in the off-state, following overnight withdrawal from antiparkinsonian medication. RESULTS: The foot task revealed extensive functional brain changes in PD compared to controls, with reduced fMRI signal during ankle dorsiflexion within the contralateral putamen and M1 foot area, and ipsilateral cerebellum. The activity of M1 foot area was negatively correlated with the severity of foot symptoms based on the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III). CONCLUSION: Overall, current findings provide new evidence of brain changes underlying motor symptoms in PD. Our results suggest that pathophysiology of lower limb symptoms in PD appears to involve both the cortico-basal ganglia and cortico-cerebellar motor circuits.


Assuntos
Doença de Parkinson , Idoso , Humanos , Antiparkinsonianos/uso terapêutico , Gânglios da Base , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia
5.
PLoS One ; 18(3): e0282203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867628

RESUMO

BACKGROUND: Much of our understanding of the deficits in force control in Parkinson's disease (PD) relies on findings in the upper extremity. Currently, there is a paucity of data pertaining to the effect of PD on lower limb force control. OBJECTIVE: The purpose of this study was to concurrently evaluate upper- and lower-limb force control in early-stage PD and a group of age- and gender-matched healthy controls. METHODS: Twenty individuals with PD and twenty-one healthy older adults participated in this study. Participants performed two visually guided, submaximal (15% of maximum voluntary contractions) isometric force tasks: a pinch grip task and an ankle dorsiflexion task. PD were tested on their more affected side and after overnight withdrawal from antiparkinsonian medication. The tested side in controls was randomized. Differences in force control capacity were assessed by manipulating speed-based and variability-based task parameters. RESULTS: Compared with controls, PD demonstrated slower rates of force development and force relaxation during the foot task, and a slower rate of relaxation during the hand task. Force variability was similar across groups but greater in the foot than in the hand in both PD and controls. Lower limb rate control deficits were greater in PD with more severe symptoms based on the Hoehn and Yahr stage. CONCLUSIONS: Together, these results provide quantitative evidence of an impaired capacity in PD to produce submaximal and rapid force across multiple effectors. Moreover, results suggest that force control deficits in the lower limb may become more severe with disease progression.


Assuntos
Tornozelo , Força da Mão , Doença de Parkinson , Idoso , Humanos , , Extremidade Inferior , Doença de Parkinson/fisiopatologia , Estudos de Casos e Controles , Mãos
6.
Mov Disord ; 37(6): 1272-1281, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35403258

RESUMO

BACKGROUND: Differentiating progressive supranuclear palsy-parkinsonism (PSP-P) from Parkinson's disease (PD) is clinically challenging. OBJECTIVE: This study aimed to develop an automated Magnetic Resonance Parkinsonism Index 2.0 (MRPI 2.0) algorithm to distinguish PSP-P from PD and to validate its diagnostic performance in two large independent cohorts. METHODS: We enrolled 676 participants: a training cohort (n = 346; 43 PSP-P, 194 PD, and 109 control subjects) from our center and an independent testing cohort (n = 330; 62 PSP-P, 171 PD, and 97 control subjects) from an international research group. We developed a new in-house algorithm for MRPI 2.0 calculation and assessed its performance in distinguishing PSP-P from PD and control subjects in both cohorts using receiver operating characteristic curves. RESULTS: The automated MRPI 2.0 showed excellent performance in differentiating patients with PSP-P from patients with PD and control subjects both in the training cohort (area under the receiver operating characteristic curve [AUC] = 0.93 [95% confidence interval, 0.89-0.98] and AUC = 0.97 [0.93-1.00], respectively) and in the international testing cohort (PSP-P versus PD, AUC = 0.92 [0.87-0.97]; PSP-P versus controls, AUC = 0.94 [0.90-0.98]), suggesting the generalizability of the results. The automated MRPI 2.0 also accurately distinguished between PSP-P and PD in the early stage of the diseases (AUC = 0.91 [0.84-0.97]). A strong correlation (r = 0.91, P < 0.001) was found between automated and manual MRPI 2.0 values. CONCLUSIONS: Our study provides an automated, validated, and generalizable magnetic resonance biomarker to distinguish PSP-P from PD. The use of the automated MRPI 2.0 algorithm rather than manual measurements could be important to standardize measures in patients with PSP-P across centers, with a positive impact on multicenter studies and clinical trials involving patients from different geographic regions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Paralisia/diagnóstico , Doença de Parkinson/diagnóstico , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem
7.
Mov Disord ; 37(2): 325-333, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34724257

RESUMO

BACKGROUND: Rasagiline has received attention as a potential disease-modifying therapy for Parkinson's disease (PD). Whether rasagiline is disease modifying remains in question. OBJECTIVE: The main objective of this study was to determine whether rasagiline has disease-modifying effects in PD over 1 year. Secondarily we evaluated two diffusion magnetic resonance imaging pulse sequences to determine the best sequence to measure disease progression. METHODS: This prospective, randomized, double-blind, placebo-controlled trial assessed the effects of rasagiline administered at 1 mg/day over 12 months in early-stage PD. The primary outcome was 1-year change in free-water accumulation in posterior substantia nigra (pSN) measured using two diffusion magnetic resonance imaging pulse sequences, one with a repetition time (TR) of 2500 ms (short TR; n = 90) and one with a TR of 6400 ms (long TR; n = 75). Secondary clinical outcomes also were assessed. RESULTS: Absolute change in pSN free-water accumulation was not significantly different between groups (short TR: P = 0.346; long TR: P = 0.228). No significant differences were found in any secondary clinical outcomes between groups. Long TR, but not short TR, data show pSN free-water increased significantly over 1 year (P = 0.025). Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III increased significantly over 1 year (P = 0.009), and baseline free-water in the pSN correlated with the 1-year change in Movement Disorder Society Unified Parkinson's Disease Rating Scale testing of motor function, Part III (P = 0.004) and 1-year change in bradykinesia score (P = 0.044). CONCLUSIONS: We found no evidence that 1 mg/day rasagiline has a disease-modifying effect in PD over 1 year. We found pSN free-water increased over 1 year, and baseline free-water relates to clinical motor progression, demonstrating the importance of diffusion imaging parameters for detecting and predicting PD progression. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Imagem de Difusão por Ressonância Magnética , Progressão da Doença , Método Duplo-Cego , Humanos , Indanos/farmacologia , Indanos/uso terapêutico , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Estudos Prospectivos
8.
Mov Disord ; 36(3): 681-689, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33151015

RESUMO

BACKGROUND: Enlargement of the third ventricle has been reported in atypical parkinsonism. We investigated whether the measurement of third ventricle width could distinguish Parkinson's disease (PD) from progressive supranuclear palsy (PSP). METHODS: We assessed a new MR T1-weighted measurement (third ventricle width/internal skull diameter) in a training cohort of 268 participants (98 PD, 73 PSP, 98 controls from our center) and in a testing cohort of 291 participants (82 de novo PD patients and 133 controls from the Parkinson's Progression Markers Initiative, 76 early-stage PSP from an international research group). PD diagnosis was confirmed after a 4-year follow-up. Diagnostic performance of the third ventricle/internal skull diameter was assessed using receiver operating characteristic curve with bootstrapping; the area under the curve of the training cohort was compared with the area under the curve of the testing cohort using the De Long test. RESULTS: In both cohorts, third ventricle/internal skull diameter values did not differ between PD and controls but were significantly lower in PD than in PSP patients (P < 0.0001). In PD, third ventricle/internal skull diameter values did not change significantly between baseline and follow-up evaluation. Receiver operating characteristic analysis accurately differentiated PD from PSP in the training cohort (area under the curve, 0.94; 95% CI, 91.1-97.6; cutoff, 5.72) and in the testing cohort (area under the curve, 0.91; 95% CI, 87.0-97.0; cutoff,: 5.88), validating the generalizability of the results. CONCLUSION: Our study provides a new reliable and validated MRI measurement for the early differentiation of PD and PSP. The simplicity and generalizability of this biomarker make it suitable for routine clinical practice and for selection of patients in clinical trials worldwide. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico por imagem
9.
Mov Disord ; 35(8): 1388-1395, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32357259

RESUMO

OBJECTIVE: Accurate diagnosis is particularly challenging in Parkinson's disease (PD), multiple system atrophy (MSAp), and progressive supranuclear palsy (PSP). We compare the utility of 3 promising biomarkers to differentiate disease state and explain disease severity in parkinsonism: the Automated Imaging Differentiation in Parkinsonism (AID-P), the Magnetic Resonance Parkinsonism Index (MRPI), and plasma-based neurofilament light chain protein (NfL). METHODS: For each biomarker, the area under the curve (AUC) of receiver operating characteristic curves were quantified for PD versus MSAp/PSP and MSAp versus PSP and statistically compared. Unique combinations of variables were also assessed. Furthermore, each measures association with disease severity was determined using stepwise multiple regression. RESULTS: For PD versus MSAp/PSP, AID-P (AUC, 0.900) measures had higher AUC compared with NfL (AUC, 0.747) and MRPI (AUC, 0.669), P < 0.05. For MSAp versus PSP, AID-P (AUC, 0.889), and MRPI (AUC, 0.824) measures were greater than NfL (AUC, 0.537), P < 0.05. We then combined measures to determine if any unique combination provided enhanced accuracy and found that no combination performed better than the AID-P alone in differentiating parkinsonisms. Furthermore, we found that the AID-P demonstrated the highest association with the MDS-UPDRS (Radj2 -AID-P, 26.58%; NfL,15.12%; MRPI, 12.90%). CONCLUSIONS: Compared with MRPI and NfL, AID-P provides the best overall differentiation of PD versus MSAp/PSP. Both AID-P and MRPI are effective in differentiating MSAp versus PSP. Furthermore, combining biomarkers did not improve classification of disease state compared with using AID-P alone. The findings demonstrate in the current sample that the AID-P and MRPI are robust biomarkers for PD, MSAp, and PSP. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Filamentos Intermediários , Imageamento por Ressonância Magnética , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Transtornos Parkinsonianos/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem
10.
Mov Disord ; 35(6): 976-983, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32092195

RESUMO

BACKGROUND: The Magnetic Resonance Parkinsonism Index is listed as one of the most reliable imaging morphometric markers for diagnosis of progressive supranuclear palsy (PSP). However, the use of this index in diagnostic workup has been limited until now by the low generalizability of published results because of small monocentric patient cohorts, the lack of data validation in independent patient series, and manual measurements used for index calculation. The objectives of this study were to investigate the generalizability of Magnetic Resonance Parkinsonism Index performance validating previously established cutoff values in a large international cohort of PSP patients subclassified into PSP-Richardson's syndrome and PSP-parkinsonism and to standardize the use of the automated Magnetic Resonance Parkinsonism Index by providing a web-based platform to obtain homogenous measures around the world. METHODS: In a retrospective international multicenter study, a total of 173 PSP patients and 483 non-PSP participants were enrolled. A web-based platform (https://mrpi.unicz.it) was used to calculate automated Magnetic Resonance Parkinsonism Index values. RESULTS: Magnetic Resonance Parkinsonism Index values showed optimal performance in differentiating PSP-Richardson's syndrome and PSP-parkinsonism patients from non-PSP participants (93.6% and 86.5% of accuracy, respectively). The Magnetic Resonance Parkinsonism Index was also able to differentiate PSP-Richardson's syndrome and PSP-parkinsonism patients in an early stage of the disease from non-PSP participants (90.1% and 85.9%, respectively). The web-based platform provided the automated Magnetic Resonance Parkinsonism Index calculation in 94% of cases. CONCLUSIONS: Our study provides the first evidence on the generalizability of automated Magnetic Resonance Parkinsonism Index measures in a large international cohort of PSP-Richardson's syndrome and PSP-parkinsonism patients. The web-based platform enables widespread applicability of the automated Magnetic Resonance Parkinsonism Index to different clinical and research settings. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Paralisia Supranuclear Progressiva , Estudos de Coortes , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Paralisia Supranuclear Progressiva/diagnóstico por imagem
11.
J Neurosci ; 40(8): 1722-1731, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31941666

RESUMO

Regulating muscle force and timing are fundamental for accurate motor performance. In spinocerebellar ataxia type 6 (SCA6), there is evidence that individuals have greater force dysmetria but display better temporal accuracy during fast goal directed contractions. Here, we test whether greater temporal accuracy occurs in all individuals with SCA6, and can be explained by lesser temporal variability. Further we examine whether it is linked to disease severity and specific degenerative changes in the cerebellum. Nineteen human participants with SCA6 (13 woman) and 18 healthy controls performed fast goal-directed ankle dorsiflexion contractions aiming at a spatiotemporal target. We quantified the endpoint control of these contractions, gray matter (GM) integrity of the cerebellum, and disease severity using the International Cooperative Ataxia Rating Scale (ICARS). SCA6 individuals exhibited lower temporal endpoint error and variability than the healthy controls (p = 0.008). Statistically, SCA6 clustered into two distinct groups for temporal variability. A group with low temporal variability ranging from 10 to 19% (SCA6a) and a group with temporal variability similar to healthy controls (SCA6b; 19-40%).SCA6a exhibited greater disease severity than SCA6b, as assessed with ICARS (p < 0.001). Lower temporal variability, which was not associated with disease duration (R2 = 0.1, p > 0.2), did correlate with both greater ICARS (R2 = 0.3) and reduced GM volume in cerebellar lobule VI (R2 = 0.35). Other cerebellar lobules did not relate to temporal variability. We provide new evidence that a subset of SCA6 with greater loss of GM in cerebellum lobule VI exhibit temporal invariance and more severe ataxia than other SCA6 individuals.SIGNIFICANCE STATEMENT Variability is an inherent feature of voluntary movement, and traditionally more variability in the targeted output infers impaired performance. For example, cerebellar patients present exacerbated temporal variability during multijoint movements, which is thought to contribute to their motor deficits. In the current work, we show that in a subgroup of spinocerebellar ataxia type 6 individuals, temporal variability is lower than that of healthy controls when performing single-joint fast-goal directed movements. This invariance related to exacerbated atrophy of lobule VI of the cerebellum and exacerbated disease severity. The relation between invariance and disease severity suggests that pathological motor variability can manifest not only as an exacerbation but also as a reduction relative to healthy controls.


Assuntos
Cerebelo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Ataxias Espinocerebelares/diagnóstico por imagem , Idoso , Atrofia/diagnóstico por imagem , Atrofia/patologia , Cerebelo/patologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Ataxias Espinocerebelares/patologia
12.
Parkinsonism Relat Disord ; 62: 10-15, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30639168

RESUMO

INTRODUCTION: When using free-water diffusion imaging or positron emission tomography (PET), it is established that substania nigra microstructure and presynaptic dopamine activity are impaired in early PD. It is not well understood if these two forms of degeneration are redundant, or if they each provide a unique contribution to the clinical motor and cognitive symptoms. METHODS: A total of 129 PD and 75 control individuals underwent motor and cognitive evaluations, and in vivo [11C]dihydrotetrabenazine (DTBZ) monoaminergic brain PET imaging and diffusion imaging. Correlations between free-water in the substantia nigra and striatal PET measures were analyzed. Unbiased multiple regression using a backward elimination method was performed between clinical severity and all imaging measures. RESULTS: Inverse correlations were found between free-water in posterior substantia nigra and DTBZ binding in putamen and caudate. Multiple regression revealed that increased free-water in the posterior substantia nigra, decreased DTBZ binding in putamen, and age were predictors of higher Hoehn and Yahr stage, MDS-UPDRS III scores, and posture and gait sub-scores. Increased posterior substantia nigra free-water alone was associated tremor scores. Free-water in caudate and putamen did not predict measures of motor performance. Decreased DTBZ binding in caudate, increased free-water in caudate and posterior substantia nigra were associated with higher dementia ratings. CONCLUSIONS: These findings suggest that free-water in the posterior substantia nigra and presynaptic dopamine imaging in striatum are uniquely associated with the clinical symptoms of PD, indicating that each imaging modality may be measuring a unique mechanism relevant to nigrostriatal degeneration.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Doença de Parkinson/metabolismo , Água/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacologia , Tremor/metabolismo
13.
Lancet Digit Health ; 1(5): e222-e231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-33323270

RESUMO

BACKGROUND: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approach. METHODS: We did an international study at 17 MRI centres in Austria, Germany, and the USA. We used diffusion-weighted MRI from 1002 patients and the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III) to develop and validate disease-specific machine learning comparisons using 60 template regions and tracts of interest in Montreal Neurological Institute space between Parkinson's disease and atypical parkinsonism (multiple system atrophy and progressive supranuclear palsy) and between multiple system atrophy and progressive supranuclear palsy. For each comparison, models were developed on a training and validation cohort and evaluated in an independent test cohort by quantifying the area under the curve (AUC) of receiving operating characteristic curves. The primary outcomes were free water and free-water-corrected fractional anisotropy across 60 different template regions. FINDINGS: In the test cohort for disease-specific comparisons, the diffusion-weighted MRI plus MDS-UPDRS III model (Parkinson's disease vs atypical parkinsonism had an AUC 0·962; multiple system atrophy vs progressive supranuclear palsy AUC 0·897) and diffusion-weighted MRI only model had high AUCs (Parkinson's disease vs atypical parkinsonism AUC 0·955; multiple system atrophy vs progressive supranuclear palsy AUC 0·926), whereas the MDS-UPDRS III only models had significantly lower AUCs (Parkinson's disease vs atypical parkinsonism 0·775; multiple system atrophy vs progressive supranuclear palsy 0·582). These results indicate that a non-invasive imaging approach is capable of differentiating forms of parkinsonism comparable to current gold standard methods. INTERPRETATIONS: This study provides an objective, validated, and generalisable imaging approach to distinguish different forms of parkinsonian syndromes using multisite diffusion-weighted MRI cohorts. The diffusion-weighted MRI method does not involve radioactive tracers, is completely automated, and can be collected in less than 12 min across 3T scanners worldwide. The use of this test could positively affect the clinical care of patients with Parkinson's disease and parkinsonism and reduce the number of misdiagnosed cases in clinical trials. FUNDING: National Institutes of Health and Parkinson's Foundation.


Assuntos
Biomarcadores , Aprendizado de Máquina , Atrofia de Múltiplos Sistemas/diagnóstico , Transtornos Parkinsonianos/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Idoso , Anisotropia , Áustria , Encéfalo , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/estatística & dados numéricos , Feminino , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Reprodutibilidade dos Testes , Estados Unidos
14.
Lancet Digit Health ; 1(5): e222-e231, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-32259098

RESUMO

Background: There is a critical need to develop valid, non-invasive biomarkers for Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes. Methods: We used dMRI from 1002 subjects, along with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), to develop and validate disease-specific machine learning comparisons using 60 template regions and tracts of interest in Montreal Neurological Institute (MNI) space between Parkinson's disease (PD) and Atypical Parkinsonism (multiple system atrophy - MSA, progressive supranuclear palsy - PSP), as well as between MSA and PSP. For each comparison, models were developed on a training/validation cohort and evaluated in a test cohort by quantifying the area under the curve (AUC) of receiving operating characteristic (ROC) curves. Findings: In the test cohort for both disease-specific comparisons, AUCs were high in the dMRI + MDS-UPDRS (PD vs. Atypical Parkinsonism: 0·962; MSA vs. PSP: 0·897) and dMRI Only (PD vs. Atypical Parkinsonism: 0·955; MSA vs. PSP: 0·926) models, whereas the MDS-UPDRS III Only models had significantly lower AUCs (PD vs. Atypical Parkinsonism: 0·775; MSA vs. PSP: 0·582). Interpretations: This study provides an objective, validated, and generalizable imaging approach to distinguish different forms of Parkinsonian syndromes using multi-site dMRI cohorts. The dMRI method does not involve radioactive tracers, is completely automated, and can be collected in less than 12 minutes across 3T scanners worldwide. The use of this test could thus positively impact the clinical care of patients with Parkinson's disease and Parkinsonism as well as reduce the number of misdiagnosed cases in clinical trials.


Assuntos
Processamento de Imagem Assistida por Computador/normas , Aprendizado de Máquina/normas , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Áustria , Alemanha , Humanos , Estados Unidos
15.
Curr Neurol Neurosci Rep ; 18(12): 83, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30280267

RESUMO

PURPOSE OF REVIEW: Advances in neuroimaging techniques pave a rich avenue for in vivo progression biomarkers, which can objectively and noninvasively assess the long-term dynamic alterations in the brain of Parkinson's disease (PD) patients. This article reviews recent progress in structural magnetic resonance imaging (MRI) tools to track disease progression in PD, and discusses specific criteria a neuroimaging tool needs to meet to be a progression biomarker of PD and the potential applications of these techniques in PD based on current evidence. RECENT FINDINGS: Recent longitudinal studies showed that quantitative structural MRI markers derived from T1-weighted, diffusion-weighted, neuromelanin-sensitive, and iron-sensitive imaging have the potential to track disease progression in PD. However, validation of these progression biomarkers is only beginning, and more work is required for multisite validation, the sample size for use in a clinical trial, and drug-responsiveness of most of these biomarkers. At present, the most clinical trial-ready biomarker is free-water diffusion imaging of the substantia nigra and seems well established to be used in disease-modifying studies in PD. A variety of structural imaging biomarkers are promising candidates to be progression biomarkers in PD. Further studies are needed to elucidate the sensitivity, reliability, sample size, and effect of confounding factors of these progression biomarkers.


Assuntos
Doença de Parkinson/diagnóstico por imagem , Biomarcadores/metabolismo , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética/métodos , Melaninas/metabolismo , Neuroimagem , Doença de Parkinson/metabolismo , Substância Negra/diagnóstico por imagem
16.
Mov Disord ; 33(11): 1688-1699, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30280416

RESUMO

There is abundant evidence that the pathophysiology of Parkinson's disease (PD) is not confined to the nigrostriatal dopaminergic pathway but propagates along the cortico-basal ganglia-thalamo-cortical neural network. A critical node in this functional circuit impacted by PD is the primary motor cortex (M1), which plays a key role in generating neural impulses that regulate movements. The past several decades have lay witness to numerous in vivo neuroimaging techniques that provide a window into the function and structure of M1. A consistent observation from numerous studies is that during voluntary movement, but also at rest, the functional activity of M1 is altered in PD relative to healthy individuals, and it relates to many of the motor signs. Although this abnormal functional activity can be partially restored with acute dopaminergic medication, it continues to deteriorate with disease progression and may predate structural degeneration of M1. The current review discusses the evidence that M1 is fundamental to the pathophysiology of PD, as measured by neuroimaging techniques such as positron emission tomography, single-photon emission computed tomography, electroencephalography, magnetoencephalography, and functional and structural MRI. Although novel treatments that target the cortex will not cure PD, they could significantly slow down and alter the progressive course of the disease and thus improve clinical care for this degenerative disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Neuroimagem , Doença de Parkinson/patologia , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiopatologia , Humanos
17.
Neuroimage Clin ; 19: 559-571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29984164

RESUMO

We investigated the effect of acute levodopa administration on movement-related cortical oscillations and movement velocity in Parkinson's disease (PD). Patients with PD on and off medication and age- and sex-matched healthy controls performed a ballistic upper limb flexion movement as fast and accurately as possible while cortical oscillations were recorded with high-density electroencephalography. Patients off medication were also studied using task-based functional magnetic resonance imaging (fMRI) using a force control paradigm. Percent signal change of functional activity during the force control task was calculated for the putamen and subthalamic nucleus (STN) contralateral to the hand tested. We found that patients with PD off medication had an exaggerated movement-related beta-band (13-30 Hz) desynchronization in the supplementary motor area (SMA) compared to controls. In PD, spectral power in the beta-band was correlated with movement velocity. Following an acute dose of levodopa, we observed that the beta-band desynchronization in the SMA was reduced in PD, and was associated with increased movement velocity and increased voltage of agonist muscle activity. Further, using fMRI we found that the functional activity in the putamen and STN in the off medication state, was related to how responsive that cortical oscillations in the SMA of PD were to levodopa. Collectively, these findings provide the first direct evaluation of how movement-related cortical oscillations relate to movement velocity during the ballistic phase of movement in PD and demonstrate that functional brain activity in the basal ganglia pathways relate to the effects of dopaminergic medication on cortical neuronal oscillations during movement.


Assuntos
Gânglios da Base/efeitos dos fármacos , Levodopa/uso terapêutico , Córtex Motor/efeitos dos fármacos , Movimento/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos , Adulto , Idoso , Antiparkinsonianos/uso terapêutico , Gânglios da Base/fisiopatologia , Estimulação Encefálica Profunda/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Modalidades de Fisioterapia , Núcleo Subtalâmico/fisiopatologia
19.
Neurobiol Aging ; 66: 32-39, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505953

RESUMO

The single-nucleotide polymorphism rs356219 in the α-synuclein (SNCA) gene has been shown to significantly contribute to an earlier age at onset of Parkinson's disease (PD), and regulates SNCA expression in PD brain regions, blood, and plasma. Here, we used multimodal magnetic resonance imaging (MRI) to study healthy adults with and without the rs356219 risk genotype. Motor and cognitive tests were administered, and all participants underwent functional and structural MRI. Imaging analyses included (1) task-based functional MRI; (2) task-based functional connectivity; (3) free-water diffusion MRI of the substantia nigra; (4) voxel-based morphometry; and (5) surface-based morphometry. There were no differences between the 2 groups in motor and cognitive performance, or brain structure. However, carrying a PD risk variant was associated with reduced functional activity in the posterior putamen and primary motor cortex. Moreover, the posterior putamen had reduced functional connectivity with the motor cortex during motor control in those with a risk genotype compared to those without. These findings point to functional abnormalities in the striatocortical circuit of rs356219 risk genotype carriers.


Assuntos
Encéfalo/diagnóstico por imagem , Envelhecimento Saudável/genética , Envelhecimento Saudável/psicologia , Atividade Motora , Neuroimagem , Polimorfismo de Nucleotídeo Único , alfa-Sinucleína/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Comportamento , Encéfalo/patologia , Cognição , Imagem de Difusão por Ressonância Magnética , Feminino , Genótipo , Envelhecimento Saudável/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Risco
20.
Brain ; 141(2): 472-485, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293948

RESUMO

Essential tremor is a neurological syndrome of heterogeneous pathology and aetiology that is characterized by tremor primarily in the upper extremities. This tremor is commonly hypothesized to be driven by a single or multiple neural oscillator(s) within the cerebello-thalamo-cortical pathway. Several studies have found an association of blood-oxygen level-dependent (BOLD) signal in the cerebello-thalamo-cortical pathway with essential tremor, but there is behavioural evidence that also points to the possibility that the severity of tremor could be influenced by visual feedback. Here, we directly manipulated visual feedback during a functional MRI grip force task in patients with essential tremor and control participants, and hypothesized that an increase in visual feedback would exacerbate tremor in the 4-12 Hz range in essential tremor patients. Further, we hypothesized that this exacerbation of tremor would be associated with dysfunctional changes in BOLD signal and entropy within, and beyond, the cerebello-thalamo-cortical pathway. We found that increases in visual feedback increased tremor in the 4-12 Hz range in essential tremor patients, and this increase in tremor was associated with abnormal changes in BOLD amplitude and entropy in regions within the cerebello-thalamo-motor cortical pathway, and extended to visual and parietal areas. To determine if the tremor severity was associated with single or multiple brain region(s), we conducted a birectional stepwise multiple regression analysis, and found that a widespread functional network extending beyond the cerebello-thalamo-motor cortical pathway was associated with changes in tremor severity measured during the imaging protocol. Further, this same network was associated with clinical tremor severity measured with the Fahn, Tolosa, Marin Tremor Rating Scale, suggesting this network is clinically relevant. Since increased visual feedback also reduced force error, this network was evaluated in relation to force error but the model was not significant, indicating it is associated with force tremor but not force error. This study therefore provides new evidence that a widespread functional network is associated with the severity of tremor in patients with essential tremor measured simultaneously at the hand during functional imaging, and is also associated with the clinical severity of tremor. These findings support the idea that the severity of tremor is exacerbated by increased visual feedback, suggesting that designers of new computing technologies should consider using lower visual feedback levels to reduce tremor in essential tremor.


Assuntos
Mapeamento Encefálico , Tremor Essencial/complicações , Tremor Essencial/patologia , Retroalimentação Sensorial/fisiologia , Vias Neurais/fisiopatologia , Visão Ocular/fisiologia , Adulto , Idoso , Cerebelo/diagnóstico por imagem , Conectoma , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Córtex Motor/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Oxigênio/sangue , Desempenho Psicomotor/fisiologia , Análise de Regressão , Tálamo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA