Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38560735

RESUMO

Identifying cell types and understanding their functional properties is crucial for unraveling the mechanisms underlying perception and cognition. In the retina, functional types can be identified by carefully selected stimuli, but this requires expert domain knowledge and biases the procedure towards previously known cell types. In the visual cortex, it is still unknown what functional types exist and how to identify them. Thus, for unbiased identification of the functional cell types in retina and visual cortex, new approaches are needed. Here we propose an optimization-based clustering approach using deep predictive models to obtain functional clusters of neurons using Most Discriminative Stimuli (MDS). Our approach alternates between stimulus optimization with cluster reassignment akin to an expectation-maximization algorithm. The algorithm recovers functional clusters in mouse retina, marmoset retina and macaque visual area V4. This demonstrates that our approach can successfully find discriminative stimuli across species, stages of the visual system and recording techniques. The resulting most discriminative stimuli can be used to assign functional cell types fast and on the fly, without the need to train complex predictive models or show a large natural scene dataset, paving the way for experiments that were previously limited by experimental time. Crucially, MDS are interpretable: they visualize the distinctive stimulus patterns that most unambiguously identify a specific type of neuron.

2.
Chaos ; 31(11): 113120, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34881604

RESUMO

Although routing applications increasingly affect individual mobility choices, their impact on collective traffic dynamics remains largely unknown. Smart communication technologies provide accurate traffic data for choosing one route over other alternatives; yet, inherent delays undermine the potential usefulness of such information. Here, we introduce and analyze a simple model of collective traffic dynamics, which results from route choice relying on outdated traffic information. We find for sufficiently small information delays that traffic flows are stable against perturbations. However, delays beyond a bifurcation point induce self-organized flow oscillations of increasing amplitude-congestion arises. Providing delayed information averaged over sufficiently long periods of time or, more intriguingly, reducing the number of vehicles adhering to the route recommendations may prevent such delay-induced congestion. We reveal the fundamental mechanisms underlying these phenomena in a minimal two-road model and demonstrate their generality in microscopic, agent-based simulations of a road network system. Our findings provide a way to conceptually understand system-wide traffic dynamics caused by broadly used non-instantaneous routing information and suggest how resulting unintended collective traffic states could be avoided.

3.
PLoS Comput Biol ; 17(6): e1009028, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097695

RESUMO

Divisive normalization (DN) is a prominent computational building block in the brain that has been proposed as a canonical cortical operation. Numerous experimental studies have verified its importance for capturing nonlinear neural response properties to simple, artificial stimuli, and computational studies suggest that DN is also an important component for processing natural stimuli. However, we lack quantitative models of DN that are directly informed by measurements of spiking responses in the brain and applicable to arbitrary stimuli. Here, we propose a DN model that is applicable to arbitrary input images. We test its ability to predict how neurons in macaque primary visual cortex (V1) respond to natural images, with a focus on nonlinear response properties within the classical receptive field. Our model consists of one layer of subunits followed by learned orientation-specific DN. It outperforms linear-nonlinear and wavelet-based feature representations and makes a significant step towards the performance of state-of-the-art convolutional neural network (CNN) models. Unlike deep CNNs, our compact DN model offers a direct interpretation of the nature of normalization. By inspecting the learned normalization pool of our model, we gained insights into a long-standing question about the tuning properties of DN that update the current textbook description: we found that within the receptive field oriented features were normalized preferentially by features with similar orientation rather than non-specifically as currently assumed.


Assuntos
Aprendizagem , Córtex Visual/fisiologia , Animais , Macaca mulatta , Masculino , Redes Neurais de Computação , Neurônios/fisiologia , Estimulação Luminosa , Córtex Visual/química , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA