Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Plant Sci ; 14: 1296251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111883

RESUMO

Introduction: Grapevine (Vitis vinifera) is an important fruit crop which contributes significantly to the agricultural sector worldwide. Grapevine viruses are widespread and cause serious diseases which impact the quality and quantity of crop yields. More than 80 viruses plague grapevine, with RNA viruses constituting the largest of these. A recent extension to the clustered regularly interspaced, short palindromic repeat (CRISPR) armory is the Cas13 effector, which exclusively targets single-strand RNA. CRISPR/Cas has been implemented as a defense mechanism in plants, against both DNA and RNA viruses, by being programmed to directly target and cleave the viral genomes. The efficacy of the CRISPR/Cas tool in plants is dependent on efficient delivery of its components into plant cells. Methods: To this end, the aim of this study was to use the recent Cas13d variant from Ruminococcus flavefaciens (CasRx) to target the RNA virus, grapevine virus A (GVA). GVA naturally infects grapevine, but can infect the model plant Nicotiana benthamiana, making it a helpful model to study virus infection in grapevine. gRNAs were designed against the coat protein (CP) gene of GVA. N. benthamiana plants expressing CasRx were co-infiltrated with GVA, and with a tobacco rattle virus (TRV)-gRNA expression vector, harbouring a CP gRNA. Results and discussion: Results indicated more consistent GVA reductions, specifically gRNA CP-T2, which demonstrated a significant negative correlation with GVA accumulation, as well as multiple gRNA co-infiltrations which similarly showed reduced GVA titre. By establishing a virus-targeting defense system in plants, efficient virus interference mechanisms can be established and applied to major crops, such as grapevine.

3.
Phytopathology ; 113(10): 1994-2005, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37311734

RESUMO

Grapevine leafroll disease (GLD) is a globally important disease that affects the metabolic composition and biomass of grapes, leading to a reduction in grape yield and quality of wine produced. Grapevine leafroll-associated virus 3 (GLRaV-3) is the main causal agent for GLD. This study aimed to identify protein-protein interactions between GLRaV-3 and its host. A yeast two-hybrid (Y2H) library was constructed from Vitis vinifera mRNA and screened against GLRaV-3 open reading frames encoding structural proteins and those potentially involved in systemic spread and silencing of host defense mechanisms. Five interacting protein pairs were identified, three of which were demonstrated in planta. The minor coat protein of GLRaV-3 was shown to interact with 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase 02, a protein involved in primary carbohydrate metabolism and the biosynthesis of aromatic amino acids. Interactions were also identified between GLRaV-3 p20A and an 18.1-kDa class I small heat shock protein, as well as MAP3K epsilon protein kinase 1. Both proteins are involved in the response of plants to various stressors, including pathogen infections. Two additional proteins, chlorophyll a-b binding protein CP26 and a SMAX1-LIKE 6 protein, were identified as interacting with p20A in yeast but these interactions could not be demonstrated in planta. The findings of this study advance our understanding of the functions of GLRaV-3-encoded proteins and how the interaction between these proteins and those of V. vinifera could lead to GLD.


Assuntos
Closteroviridae , Vitis , Saccharomyces cerevisiae , Clorofila A , Doenças das Plantas , Closteroviridae/genética
4.
Virus Genes ; 59(2): 244-253, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745286

RESUMO

Seven viroid species and one putative viroid species have been reported to infect grapevine namely, hop stunt viroid (HSVd), grapevine yellow speckle viroid 1 (GYSVd-1), grapevine yellow speckle viroid 2 (GYSVd-2), Australian grapevine viroid (AGVd), Japanese grapevine viroid (JGVd), grapevine latent viroid (GLVd), and citrus exocortis viroid (CEVd), as well as a grapevine hammerhead viroid-like RNA (GHVd), so far. In this study, RNA sequence (RNA-Seq) data, from 229 Vitis accessions from the field-maintained vineyard of the South African Vitis germplasm collection, were analysed to determine the diversity of the viroids present. Five of the seven known grapevine-infecting viroids and one putative grapevine-infecting viroid species were very commonly found, with 214 of the 229 samples containing at least one viroid species. HSVd, GYSVd-1, GYSVd-2, AGVd, and JGVd, as well as GHVd, were identified in the RNA-Seq data of the samples and confirmed using RT-PCR and Sanger sequencing. The HSVd sequences indicated the presence of two variants, with one showing multiple nucleotide insertions. AGVd and GYSVd-2 did not display significant sequence diversity, confirming past international studies. GYSVd-1 occurs as four major variants worldwide and representatives of all four variants were identified in this vineyard. This is the first report on the diversity of viroids infecting grapevine in South Africa and the first report of JGVd outside of Japan and GHVd in South Africa. Further studies are needed to fully assess the population and to identify potentially new viroid species.


Assuntos
Viroides , Vitis , Viroides/genética , Vitis/genética , África do Sul , Austrália , RNA
5.
Viruses ; 15(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680248

RESUMO

The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle.


Assuntos
Closteroviridae , Closterovirus , Genoma Viral , RNA Viral , Closteroviridae/genética , Closterovirus/genética , Doenças das Plantas
6.
Mol Plant Pathol ; 23(11): 1701-1718, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920132

RESUMO

Plant viruses are known to infect most economically important crops and pose a major threat to global food security. Currently, few resistant host phenotypes have been delineated, and while chemicals are used for crop protection against insect pests and bacterial or fungal diseases, these are inefficient against viral diseases. Genetic engineering emerged as a way of modifying the plant genome by introducing functional genes in plants to improve crop productivity under adverse environmental conditions. Recently, new breeding technologies, and in particular the exciting CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) technology, was shown to be a powerful alternative to engineer resistance against plant viruses, thus has great potential for reducing crop losses and improving plant productivity to directly contribute to food security. Indeed, it could circumvent the "Genetic modification" issues because it allows for genome editing without the integration of foreign DNA or RNA into the genome of the host plant, and it is simpler and more versatile than other new breeding technologies. In this review, we describe the predominant features of the major CRISPR/Cas systems and outline strategies for the delivery of CRISPR/Cas reagents to plant cells. We also provide an overview of recent advances that have engineered CRISPR/Cas-based resistance against DNA and RNA viruses in plants through the targeted manipulation of either the viral genome or susceptibility factors of the host plant genome. Finally, we provide insight into the limitations and challenges that CRISPR/Cas technology currently faces and discuss a few alternative applications of the technology in virus research.


Assuntos
Proteínas Associadas a CRISPR , Vírus de Plantas , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Produtos Agrícolas , Edição de Genes , Genoma de Planta , Melhoramento Vegetal , Vírus de Plantas/genética , RNA
7.
Plant Dis ; 106(11): 2927-2939, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35380469

RESUMO

Grapevine yellows is one of the most damaging phytoplasma-associated diseases worldwide. It is linked to several phytoplasma species, which can vary regionally due to phytoplasma and insect-vector diversity. Specific, rapid, and reliable detection of the grapevine yellows pathogen has an important role in phytoplasma control. The purpose of this study was to develop and validate a specific loop-mediated isothermal amplification (LAMP) assay for detection of a distinct strain of grapevine 'Candidatus Phytoplasma asteris' that is present in South Africa, through implementation of a genome-informed test design approach. Several freely available, user-friendly, web-based tools were coupled to design the specific LAMP assays. The criteria for selection of the assays were set for each step of the process, which resulted in four experimentally operative LAMP assays that targeted the ftsH/hflB gene region, specific to the aster yellows phytoplasma strain from South Africa. A real-time PCR was developed, targeting the same genetic region, to provide extensive validation of the LAMP assay. The validated molecular assays are highly specific to the targeted aster yellows phytoplasma strain from South Africa, with good sensitivity and reproducibility. We show a genome-informed molecular test design and an efficient validation approach for molecular tests if reference and sample materials are sparse and hard to obtain.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Phytoplasma , Phytoplasma/genética , África do Sul , Reprodutibilidade dos Testes , Doenças das Plantas
8.
Plant Dis ; 105(2): 361-367, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32748720

RESUMO

Determination of virus genomes and differentiation of strains and strain variants facilitate the linkage of biological expression to specific genetic units. For effective management of stem pitting disease of citrus tristeza virus (CTV) by cross-protection, an understanding of these links is necessary. The deliberate field application of a biological agent such as a virus first requires a thorough assessment of the long-term impact before it can be applied commercially. Three CTV sources were genetically characterized as different variants of the T68 strain, and their long-term effects on stem pitting and production were investigated. The different CTV sources were inoculated to 'Star Ruby' grapefruit trees and evaluated for a number of biological parameters in a field trial in the Limpopo Province of South Africa over a 10-year period. Significant differences were observed in stem pitting severity, impact on tree growth, yield, and the percentage of small fruit produced. These T68 variants were also associated with different stem pitting phenotypes. The variants differed in only 44 nucleotide positions across their genomes, and these minor genetic differences can therefore be used to identify possible genome regions affecting stem pitting.


Assuntos
Citrus paradisi , Citrus , Closterovirus , Doenças das Plantas , África do Sul
9.
Plant Dis ; 104(9): 2362-2368, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32689882

RESUMO

Two isolates of the T68 genotype of citrus tristeza virus (CTV) were derived from a common source, GFMS12, by single aphid transmission. These isolates, named GFMS12-8 and GFMS12-1.3, induced stem pitting with differing severity in 'Duncan' grapefruit (Citrus × paradisi [Macfad.]). Full-genome sequencing of these isolates showed only minor nucleotide sequence differences totaling 45 polymorphisms. Numerous nucleotide changes, in relatively close proximity, were detected in the p33 open reading frame (ORF) and the leader protease domains of ORF1a. This is the first report of full-genome characterization of CTV isolates of a single genotype, derived from the same source, but showing differences in pathogenicity. The results demonstrate the development of intragenotype heterogeneity known to occur with single-stranded RNA viruses. Identification of genetic variability between isolates showing different pathogenicity will enable interrogation of specific genome regions for potential stem pitting determinants.


Assuntos
Citrus paradisi , Citrus , Animais , Closterovirus , Genótipo , Filogenia , Doenças das Plantas
10.
Arch Virol ; 165(6): 1511-1514, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32314061

RESUMO

High-throughput sequencing (HTS) was used to investigate ringspots on ivy (Hedera helix) leaves. De novo assembly of HTS data generated from a total RNA extract from these leaves yielded a contig with sequence similarity to viruses of the genus Badnavirus, family Caulimoviridae. The complete genome sequence of this virus consists of 8,885 nucleotides and has three open reading frames (ORFs). Genome organisation and phylogenetic analysis identifies this newly identified virus as a new member of the genus Badnavirus for which we propose the name "ivy ringspot-associated virus" (IRSaV).


Assuntos
Badnavirus/genética , Genoma Viral , Hedera/virologia , Doenças das Plantas/virologia , Badnavirus/classificação , Badnavirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Sequenciamento Completo do Genoma
11.
Microbiol Resour Announc ; 8(17)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31023813

RESUMO

Here, we report the draft genome sequence of a phytoplasma discovered in grapevine. The genome size is 600,116 nucleotides (nt), with 597 predicted open reading frames. It is most similar to a maize bushy stunt phytoplasma of group 16SrI-B (aster yellows). The possible presence of a 3,833-nt plasmid was also noted.

12.
Arch Virol ; 163(9): 2491-2496, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29796924

RESUMO

The impact of recombination on variant classification and the use of different genomic regions to identify virus variants were investigated using a diversity study performed on grapevine rupestris stem pitting-associated virus (GRSPaV). Three surveys were conducted to investigate the genetic diversity of GRSPaV and to compare the ability of the GRSPaV coat protein and replicase domains to classify virus variants. GRSPaV variants identified in the surveys clustered into five of the six currently recognised lineages, and a seventh, previously unclassified lineage was detected. A correlation was observed between the detection of recombinant GRSPaV sequences and inconsistencies in classification when using different genome regions for analysis.


Assuntos
Proteínas do Capsídeo/genética , Flexiviridae/genética , Genoma Viral , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Vitis/virologia , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Variação Genética , Filogenia , Folhas de Planta/virologia , Recombinação Genética , Análise de Sequência de DNA
13.
Virol J ; 14(1): 200, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29058618

RESUMO

BACKGROUND: Small RNA (sRNA) associated gene regulation has been shown to play a significant role during plant-pathogen interaction. In commercial citrus orchards co-infection of Citrus tristeza virus (CTV) and viroids occur naturally. METHODS: A next-generation sequencing-based approach was used to study the sRNA and transcriptional response in grapefruit to the co-infection of CTV and Citrus dwarfing viroid. RESULTS: The co-infection resulted in a difference in the expression of a number of sRNA species when comparing healthy and infected plants; the majority of these were derived from transcripts processed in a phased manner. Several RNA transcripts were also differentially expressed, including transcripts derived from two genes, predicted to be under the regulation of sRNAs. These genes are involved in plant hormone systems; one in the abscisic acid, and the other in the cytokinin regulatory pathway. Additional analysis of virus- and viroid-derived small-interfering RNAs (siRNAs) showed areas on the pathogen genomes associated with increased siRNA synthesis. Most interestingly, the starting position of the p23 silencing suppressor's sub-genomic RNA generated a siRNA hotspot on the CTV genome. CONCLUSIONS: This study showed the involvement of various genes, as well as endogenous and exogenous RNA-derived sRNA species in the plant-defence response. The results highlighted the role of sRNA-directed plant hormone regulation during biotic stress, as well as a counter-response of plants to virus suppressors of RNA-silencing.


Assuntos
Citrus paradisi/genética , Citrus paradisi/virologia , Closterovirus , Coinfecção , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Transcriptoma , Viroides , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo
14.
PLoS One ; 12(8): e0182629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813447

RESUMO

Phytoplasmas are cell wall-less plant pathogenic bacteria responsible for major crop losses throughout the world. In grapevine they cause grapevine yellows, a detrimental disease associated with a variety of symptoms. The high economic impact of this disease has sparked considerable interest among researchers to understand molecular mechanisms related to pathogenesis. Increasing evidence exist that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation during plant development and responses to biotic and abiotic stresses. Thus, we aimed to dissect complex high-throughput small RNA sequencing data for the genome-wide identification of known and novel differentially expressed miRNAs, using read libraries constructed from healthy and phytoplasma-infected Chardonnay leaf material. Furthermore, we utilised computational resources to predict putative miRNA targets to explore the involvement of possible pathogen response pathways. We identified multiple known miRNA sequence variants (isomiRs), likely generated through post-transcriptional modifications. Sequences of 13 known, canonical miRNAs were shown to be differentially expressed. A total of 175 novel miRNA precursor sequences, each derived from a unique genomic location, were predicted, of which 23 were differentially expressed. A homology search revealed that some of these novel miRNAs shared high sequence similarity with conserved miRNAs from other plant species, as well as known grapevine miRNAs. The relative expression of randomly selected known and novel miRNAs was determined with real-time RT-qPCR analysis, thereby validating the trend of expression seen in the normalised small RNA sequencing read count data. Among the putative miRNA targets, we identified genes involved in plant morphology, hormone signalling, nutrient homeostasis, as well as plant stress. Our results may assist in understanding the role that miRNA pathways play during plant pathogenesis, and may be crucial in understanding disease symptom development in aster yellows phytoplasma-infected grapevines.


Assuntos
Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Phytoplasma , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Vitis/genética , Vitis/microbiologia , Sequência de Bases , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Interferência de RNA , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Transdução de Sinais
15.
Arch Virol ; 162(4): 987-996, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28025711

RESUMO

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs (sRNA) that play an essential role in the regulation of target mRNAs expressed during plant development and in response to stress. MicroRNA expression profiling has helped to identify miRNAs that regulate a range of processes, including the plant's defence response to pathogens. In this study, differential miRNA expression in own-rooted Vitis vinifera cv. Cabernet Sauvignon plants infected with grapevine leafroll-associated virus 3 was investigated with microarrays and next-generation sequencing (NGS) of sRNA and mRNA. These high-throughput approaches identified several differentially expressed miRNAs. Four miRNAs, identified by both approaches, were validated by stemloop RT-PCRs. Three of the predicted targets of the differentially expressed miRNAs were also differentially expressed in the transcriptome data of infected plants, and were validated by RT-qPCR. Identification of these miRNAs and their targets can lead to a better understanding of host-pathogen interactions involved in grapevine leafroll disease and the identification of possible targets for virus resistance.


Assuntos
Closteroviridae/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , RNA de Plantas/metabolismo , Vitis/metabolismo , Closteroviridae/genética , Closteroviridae/isolamento & purificação , Interações Hospedeiro-Patógeno , MicroRNAs/genética , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Vitis/genética , Vitis/virologia
16.
Virol J ; 13: 85, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250973

RESUMO

BACKGROUND: The use of next-generation sequencing has become an established method for virus detection. Efficient study design for accurate detection relies on the optimal amount of data representing a significant portion of a virus genome. FINDINGS: In this study, genome coverage at different sequencing depths was determined for a number of viruses, viroids, hosts and sequencing library types, using both read-mapping and de novo assembly-based approaches. The results highlighted the strength of ribo-depleted RNA and sRNA in obtaining saturated genome coverage with the least amount of data, while even though the poly(A)-selected RNA yielded virus-derived reads, it was insufficient to cover the complete genome of a non-polyadenylated virus. The ribo-depleted RNA data also outperformed the sRNA data in terms of the percentage of coverage that could be obtained particularly with the de novo assembled contigs. CONCLUSION: Our results suggest the use of ribo-depleted RNA in a de novo assembly-based approach for the detection of single-stranded RNA viruses. Furthermore, we suggest that sequencing one million reads will provide sufficient genome coverage specifically for closterovirus detection.


Assuntos
Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Análise de Sequência de DNA/métodos , Viroides/classificação , Viroides/isolamento & purificação , Vírus de RNA/genética , Viroides/genética
17.
Virology ; 495: 122-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27209446

RESUMO

The use of next-generation sequencing for plant virus detection is rapidly expanding, necessitating the development of bioinformatic pipelines to support analysis of these large datasets. Pipelines need to be easy implementable to mitigate potential insufficient computational infrastructure and/or skills. In this study user-friendly software was developed for the targeted detection of plant viruses based on e-probes. It can be used for both custom e-probe design, as well as screening preloaded probes against raw NGS data for virus detection. The pipeline was compared to de novo assembly-based virus detection in grapevine and produced comparable results, requiring less time and computational resources. The software, named Truffle, is available for the design and screening of e-probes tailored for user-specific virus species and data, along with preloaded probe-sets for grapevine virus detection.


Assuntos
Biologia Computacional/métodos , Sondas de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Software , Vírus/genética , Conjuntos de Dados como Assunto , Variação Genética , Genoma Viral , Doenças das Plantas/virologia , Vírus de Plantas/genética
18.
Plant Dis ; 100(11): 2251-2256, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30682917

RESUMO

Citrus tristeza virus (CTV) is endemic to southern Africa and the stem pitting syndrome that it causes was a limiting factor in grapefruit production prior to the introduction of cross-protection in the Citrus Improvement Scheme. This disease mitigation strategy, using various field-derived CTV sources, has significantly extended the productive lifespan of grapefruit orchards in South Africa. CTV commonly occurs as a population of various strains, masking the phenotypic effect of individual strains. Likewise, current South African CTV cross-protection sources are strain mixtures, obscuring an understanding of which strains are influencing cross-protection. The severity of various CTV strains has mostly been assessed on sensitive indicator hosts, but their effect on commercial varieties has seldom been investigated. Single-variant CTV isolates were used to investigate the phenotypic expression of CTV strains in commercial grapefruit varieties as well as CTV indicator hosts. They were biologically characterized for their ability to cause stem pitting and their rate of translocation and titer in the different hosts, monitored by enzyme-linked immunosorbent assay. Complete genome sequences for three CTV strain variants were generated. Isolates of CTV strains VT, T68, RB, and HA16-5 did not induce severe stem pitting in four grapefruit hosts in a glasshouse trial. Viral titers of the strains differed in the grapefruit hosts, but the RB isolate reached a higher titer in the grapefruit hosts compared with the VT, T68, and HA16-5 isolates. Additionally, horticultural assessment of two grapefruit varieties inoculated with the RB isolate in two field trials demonstrated that mild stem pitting did not negatively influence the horticultural performance of the grapefruit trees over an eight-year assessment period. 'Star Ruby' trees containing the CTV source GFMS35 showed less stem pitting than trees inoculated with the RB isolate, but had smaller canopy volumes and lower yields than trees containing the RB isolate. This suggests that the influence of CTV sources on tree performance is not limited to the effect of stem pitting.

19.
Annu Rev Phytopathol ; 53: 613-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26243729

RESUMO

Grapevine leafroll is the most complex and intriguing viral disease of grapevine (Vitis spp.). Several monopartite closteroviruses (family Closteroviridae) from grapevines have been molecularly characterized, yet their role in disease etiology is not completely resolved. Hence, these viruses are currently designated under the umbrella term of Grapevine leafroll-associated viruses (GLRaVs). This review examines our current understanding of the genetically divergent GLRaVs and highlights the emerging picture of several unique aspects of the leafroll disease pathosystem. A systems biology approach using contemporary technologies in molecular biology, -omics, and cell biology aids in exploring the comparative molecular biology of GLRaVs and deciphering the complex network of host-virus-vector interactions to bridge the gap between genomics and phenomics of leafroll disease. In addition, grapevine-infecting closteroviruses have a great potential as designer viruses to pursue functional genomics and for the rational design of novel disease intervention strategies in this agriculturally important perennial fruit crop.


Assuntos
Closteroviridae/fisiologia , Doenças das Plantas/virologia , Vitis/virologia , Closteroviridae/genética , Interações Hospedeiro-Patógeno
20.
Arch Virol ; 160(8): 2125-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26031616

RESUMO

The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).


Assuntos
Flexiviridae/genética , Flexiviridae/isolamento & purificação , Doenças das Plantas/virologia , Vitis/virologia , Flexiviridae/classificação , Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de RNA , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA