Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 14: 23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581726

RESUMO

BACKGROUND: Leaf biochemical composition corresponds to traits related to the plant state and its functioning. This study puts the emphasis on the main leaf absorbers: chlorophyll a and b ([Formula: see text]), carotenoids ([Formula: see text]), water ([Formula: see text]) and dry mater ([Formula: see text]) contents. Two main approaches were used to estimate [[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text]] in a non-destructive way using spectral measurements. The first one consists in building empirical relationships from experimental datasets using either the raw reflectances or their combination into vegetation indices (VI). The second one relies on the inversion of physically based models of leaf optical properties. Although the first approach is commonly used, the calibration of the empirical relationships is generally conducted over a limited dataset. Consequently, poor predictions may be observed when applying them on cases that are not represented in the training dataset, i.e. when dealing with different species, genotypes or under contrasted environmental conditions. The retrieval performances of the selected VIs were thus compared to the ones of four PROSPECT model versions based on reflectance data acquired at two phenological stages, over six wheat genotypes grown under three different nitrogen fertilizations and two sowing density modalities. Leaf reflectance was measured in the lab with a spectrophotometer equipped with an integrating sphere, the leaf being placed in front of a white Teflon background to increase the sensitivity to leaf biochemical composition. Destructive measurements of [[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text]] were performed concurrently. RESULTS: The destructive measurements demonstrated that the carotenoid, [Formula: see text], and chlorophyll, [Formula: see text], contents were strongly correlated (r2 = 0.91). The sum of [Formula: see text] and [Formula: see text], i.e. the total chlorophyllian pigment content, [Formula: see text], was therefore used in this study. When inverting the PROSPECT model, accounting for the brown pigment content, [Formula: see text], was necessary when leaves started to senesce. The values of [Formula: see text] and [Formula: see text] were well estimated (r2 = 0.81 and r2 = 0.88 respectively) while the dry matter content, [Formula: see text], was poorly estimated (r2 = 0.00). Retrieval of [Formula: see text] from PROSPECT versions was only slightly biased, while substantial overestimation of [Formula: see text] was observed. The ranking between estimated values of [Formula: see text] and [Formula: see text] from the several PROSPECT versions and that derived using the VIs were similar to the ranking observed over the destructively measured values of [Formula: see text] and [Formula: see text]. CONCLUSIONS: PROSPECT model inversion and empirical VI approach provide similar retrieval performances and are useful methods to estimate leaf biochemical composition from spectral measurements. However, the PROSPECT model inversion gives potential access to additional traits on surface reflectivity and leaf internal structure. This study suggests that non-destructive estimation of leaf chlorophyll and water contents is a relevant method to provide leaf traits with relatively high throughput.

2.
Front Plant Sci ; 9: 1908, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30700989

RESUMO

Heliaphen is an outdoor platform designed for high-throughput phenotyping. It allows the automated management of drought scenarios and monitoring of plants throughout their lifecycles. A robot moving between plants growing in 15-L pots monitors the plant water status and phenotypes the leaf or whole-plant morphology. From these measurements, we can compute more complex traits, such as leaf expansion (LE) or transpiration rate (TR) in response to water deficit. Here, we illustrate the capabilities of the platform with two practical cases in sunflower (Helianthus annuus): a genetic and genomic study of the response of yield-related traits to drought, and a modeling study using measured parameters as inputs for a crop simulation. For the genetic study, classical measurements of thousand-kernel weight (TKW) were performed on a biparental population under automatically managed drought stress and control conditions. These data were used for an association study, which identified five genetic markers of the TKW drought response. A complementary transcriptomic analysis identified candidate genes associated with these markers that were differentially expressed in the parental backgrounds in drought conditions. For the simulation study, we used a crop simulation model to predict the impact on crop yield of two traits measured on the platform (LE and TR) for a large number of environments. We conducted simulations in 42 contrasting locations across Europe using 21 years of climate data. We defined the pattern of abiotic stresses occurring at the continental scale and identified ideotypes (i.e., genotypes with specific trait values) that are more adapted to specific environment types. This study exemplifies how phenotyping platforms can assist the identification of the genetic architecture controlling complex response traits and facilitate the estimation of ecophysiological model parameters to define ideotypes adapted to different environmental conditions.

3.
Front Plant Sci ; 8: 739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559901

RESUMO

Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects) are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m-2. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages.

4.
Plant Methods ; 13: 38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529535

RESUMO

BACKGROUND: Plant density and its non-uniformity drive the competition among plants as well as with weeds. They need thus to be estimated with small uncertainties accuracy. An optimal sampling method is proposed to estimate the plant density in wheat crops from plant counting and reach a given precision. RESULTS: Three experiments were conducted in 2014 resulting in 14 plots across varied sowing density, cultivars and environmental conditions. The coordinates of the plants along the row were measured over RGB high resolution images taken from the ground level. Results show that the spacing between consecutive plants along the row direction are independent and follow a gamma distribution under the varied conditions experienced. A gamma count model was then derived to define the optimal sample size required to estimate plant density for a given precision. Results suggest that measuring the length of segments containing 90 plants will achieve a precision better than 10%, independently from the plant density. This approach appears more efficient than the usual method based on fixed length segments where the number of plants are counted: the optimal length for a given precision on the density estimation will depend on the actual plant density. The gamma count model parameters may also be used to quantify the heterogeneity of plant spacing along the row by exploiting the variability between replicated samples. Results show that to achieve a 10% precision on the estimates of the 2 parameters of the gamma model, 200 elementary samples corresponding to the spacing between 2 consecutive plants should be measured. CONCLUSIONS: This method provides an optimal sampling strategy to estimate the plant density and quantify the plant spacing heterogeneity along the row.

5.
Plant Cell Environ ; 36(12): 2175-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639099

RESUMO

Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.


Assuntos
Biomarcadores/metabolismo , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/fisiologia , Água/fisiologia , Ritmo Circadiano/genética , Desidratação , Secas , Perfilação da Expressão Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Genótipo , Cinética , Modelos Lineares , Transpiração Vegetal/fisiologia , Reprodutibilidade dos Testes , Solo
6.
Funct Plant Biol ; 39(11): 914-924, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480841

RESUMO

A semi-automatic system was developed to monitor micro-plots of wheat cultivars in field conditions for phenotyping. The system is based on a hyperspectral radiometer and 2 RGB cameras observing the canopy from ~1.5m distance to the top of the canopy. The system allows measurement from both nadir and oblique views inclined at 57.5° zenith angle perpendicularly to the row direction. The system is fixed to a horizontal beam supported by a tractor that moves along the micro-plots. About 100 micro-plots per hour were sampled by the system, the data being automatically collected and registered thanks to a centimetre precision geo-location. The green fraction (GF, the fraction of green area per unit ground area as seen from a given direction) was derived from the images with an automatic segmentation process and the reflectance spectra recorded by the radiometers were transformed into vegetation indices (VI) such as MCARI2 and MTCI. Results showed that MCARI2 is a good proxy of the GF, the MTCI as observed from 57° inclination is expected to be mainly sensitive to leaf chlorophyll pigments. The frequent measurements achieved allowed a good description of the dynamics of each micro-plot along the growth cycle. It is characterised by two periods: the first period corresponding to the vegetative stages exhibits a small rate of change of VI with time; followed by the senescence period characterised by a high rate of change. The dynamics were simply described by a bilinear model with its parameters providing high throughput metrics (HTM). A variance analysis achieved over these HTMs showed that several HTMs were highly heritable, particularly those corresponding to MCARI2 as observed from nadir, and those corresponding to the first period. Potentials of such semi-automatic measurement system are discussed for in field phenotyping applications.

7.
Sensors (Basel) ; 8(5): 3557-3585, 2008 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27879893

RESUMO

This paper outlines how light Unmanned Aerial Vehicles (UAV) can be used in remote sensing for precision farming. It focuses on the combination of simple digital photographic cameras with spectral filters, designed to provide multispectral images in the visible and near-infrared domains. In 2005, these instruments were fitted to powered glider and parachute, and flown at six dates staggered over the crop season. We monitored ten varieties of wheat, grown in trial micro-plots in the South-West of France. For each date, we acquired multiple views in four spectral bands corresponding to blue, green, red, and near-infrared. We then performed accurate corrections of image vignetting, geometric distortions, and radiometric bidirectional effects. Afterwards, we derived for each experimental micro-plot several vegetation indexes relevant for vegetation analyses. Finally, we sought relationships between these indexes and field-measured biophysical parameters, both generic and date-specific. Therefore, we established a robust and stable generic relationship between, in one hand, leaf area index and NDVI and, in the other hand, nitrogen uptake and GNDVI. Due to a high amount of noise in the data, it was not possible to obtain a more accurate model for each date independently. A validation protocol showed that we could expect a precision level of 15% in the biophysical parameters estimation while using these relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA