Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacol Ther ; 104(1): 130-138, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28960269

RESUMO

CYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3'UTR may explain variable drug response by altering microRNA regulation. Five 3'UTR variants were associated with significantly altered efavirenz AUC0-48 (8-OH-EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR-1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR-1275 (P = 0.0035). Our results show that a 3'UTR variant contributes to variability in CYP2B6 activity.


Assuntos
Regiões 3' não Traduzidas/genética , Benzoxazinas/farmacocinética , Indutores do Citocromo P-450 CYP2B6/farmacocinética , Citocromo P-450 CYP2B6/genética , MicroRNAs/metabolismo , Adolescente , Adulto , Alcinos , Alelos , Área Sob a Curva , Benzoxazinas/metabolismo , Sítios de Ligação , Simulação por Computador , Ciclopropanos , Citocromo P-450 CYP2B6/metabolismo , Indutores do Citocromo P-450 CYP2B6/metabolismo , Feminino , Voluntários Saudáveis , Células Hep G2 , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Adulto Jovem
2.
Int J Mol Sci ; 18(3)2017 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-28335481

RESUMO

Colistin sulfate (polymixin E) is an antibiotic prescribed with increasing frequency for severe Gram-negative bacterial infections. As nephrotoxicity is a common side effect, the discovery of pharmacogenomic markers associated with toxicity would benefit the utility of this drug. Our objective was to identify genetic markers of colistin cytotoxicity that were also associated with expression of key proteins using an unbiased, whole genome approach and further evaluate the functional significance in renal cell lines. To this end, we employed International HapMap lymphoblastoid cell lines (LCLs) of Yoruban ancestry with known genetic information to perform a genome-wide association study (GWAS) with cellular sensitivity to colistin. Further association studies revealed that single nucleotide polymorphisms (SNPs) associated with gene expression and protein expression were significantly enriched in SNPs associated with cytotoxicity (p ≤ 0.001 for gene and p = 0.015 for protein expression). The most highly associated SNP, chr18:3417240 (p = 6.49 × 10-8), was nominally a cis-expression quantitative trait locus (eQTL) of the gene TGIF1 (transforming growth factor ß (TGFß)-induced factor-1; p = 0.021) and was associated with expression of the protein HOXD10 (homeobox protein D10; p = 7.17 × 10-5). To demonstrate functional relevance in a murine colistin nephrotoxicity model, HOXD10 immunohistochemistry revealed upregulated protein expression independent of mRNA expression in response to colistin administration. Knockdown of TGIF1 resulted in decreased protein expression of HOXD10 and increased resistance to colistin cytotoxicity. Furthermore, knockdown of HOXD10 in renal cells also resulted in increased resistance to colistin cytotoxicity, supporting the physiological relevance of the initial genomic associations.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Antibacterianos/efeitos adversos , Antibacterianos/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Colistina/efeitos adversos , Colistina/toxicidade , Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
3.
Front Pharmacol ; 7: 111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199754

RESUMO

UNLABELLED: Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. METHODS: In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. RESULTS: Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < -0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. CONCLUSION: Rifampin alters the expression of many of the clinically relevant hepatic drug transporters, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. The relevance of its effect on many other transporters remains to be studied.

4.
Biochem Biophys Res Commun ; 420(3): 666-70, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22450330

RESUMO

Phosphate in manure of monogastric animals pollutes the environment if improperly applied to soil. Strategies that reduce phosphate inputs into animal production systems reduce environmental pollution. Using a novel vaccine to fibroblast growth factor-23 (FGF-23), we induced neutralizing antibodies that reduced the phosphate requirement of growing chickens. Breeding hens were injected with a FGF-23 peptide (AFLPGMNP) conjugate. Antibody was passively transferred from hen to chick and chick response to deficient dietary phosphate intake was determined. Chicks without passive anti-FGF-23 antibody had a 43% and 21% reduction in blood phosphate and bone ash, respectively, when fed a phosphate deficient diet and compared to chicks fed a phosphate replete diet (P<0.05). Chicks with circulating anti-FGF-23 antibodies fed the phosphate deficient diet had plasma phosphate and bone ash that did not differ from chicks fed the phosphate replete diet (P>0.05). Neutralization of FGF-23 offers a new approach to reduce phosphate requirements of farmed animals and may provide a new means to reduce phosphate pollution related to animal farming.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/imunologia , Anticorpos/imunologia , Galinhas/crescimento & desenvolvimento , Poluentes Ambientais/análise , Fatores de Crescimento de Fibroblastos/imunologia , Esterco/análise , Necessidades Nutricionais , Fosfatos/análise , Ração Animal , Animais , Galinhas/sangue , Galinhas/metabolismo , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/química , Humanos , Fosfatos/sangue , Fosfatos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA