Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542362

RESUMO

Indole alkaloids are the main bioactive molecules of the Gelsemium genus plants. Diverse reports have shown the beneficial actions of Gelsemium alkaloids on the pathological states of the central nervous system (CNS). Nevertheless, Gelsemium alkaloids are toxic for mammals. To date, the molecular targets underlying the biological actions of Gelsemium alkaloids at the CNS remain poorly defined. Functional studies have determined that gelsemine is a modulator of glycine receptors (GlyRs) and GABAA receptors (GABAARs), which are ligand-gated ion channels of the CNS. The molecular and physicochemical determinants involved in the interactions between Gelsemium alkaloids and these channels are still undefined. We used electrophysiological recordings and bioinformatic approaches to determine the pharmacological profile and the molecular interactions between koumine, gelsemine, gelsevirine, and humantenmine and these ion channels. GlyRs composed of α1 subunits were inhibited by koumine and gelsevirine (IC50 of 31.5 ± 1.7 and 40.6 ± 8.2 µM, respectively), while humantenmine did not display any detectable activity. The examination of GlyRs composed of α2 and α3 subunits showed similar results. Likewise, GABAARs were inhibited by koumine and were insensitive to humantenmine. Further assays with chimeric and mutated GlyRs showed that the extracellular domain and residues within the orthosteric site were critical for the alkaloid effects, while the pharmacophore modeling revealed the physicochemical features of the alkaloids for the functional modulation. Our study provides novel information about the molecular determinants and functional actions of four major Gelsemium indole alkaloids on inhibitory receptors, expanding our knowledge regarding the interaction of these types of compounds with protein targets of the CNS.


Assuntos
Alcaloides , Gelsemium , Animais , Gelsemium/química , Alcaloides/química , Extratos Vegetais/química , Alcaloides Indólicos/química , Ácido gama-Aminobutírico , Mamíferos/metabolismo
2.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677580

RESUMO

GLUT1 is a facilitative glucose transporter that can transport oxidized vitamin C (i.e., dehydroascorbic acid) and complements the action of reduced vitamin C transporters. To identify the residues involved in human GLUT1's transport of dehydroascorbic acid, we performed docking studies in the 5 Å grid of the glucose-binding cavity of GLUT1. The interactions of the bicyclic hemiacetal form of dehydroascorbic acid with GLUT1 through hydrogen bonds with the -OH group of C3 and C5 were less favorable than the interactions with the sugars transported by GLUT1. The eight most relevant residues in such interactions (i.e., F26, Q161, I164, Q282, Y292, and W412) were mutated to alanine to perform functional studies for dehydroascorbic acid and the glucose analog, 2-deoxiglucose, in Xenopus laevis oocytes. All the mutants decreased the uptake of both substrates to less than 50%. The partial effect of the N317A mutant in transporting dehydroascorbic acid was associated with a 30% decrease in the Vmax compared to the wildtype GLUT1. The results show that both substrates share the eight residues studied in GLUT1, albeit with a differential contribution of N317. Our work, combining docking with functional studies, marks the first to identify structural determinants of oxidized vitamin C's transport via GLUT1.


Assuntos
Ácido Desidroascórbico , Transportador de Glucose Tipo 1 , Humanos , Ácido Ascórbico , Transporte Biológico , Ácido Desidroascórbico/metabolismo , Glucose , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/genética
3.
J Alzheimers Dis ; 94(s1): S97-S108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36463456

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-ß peptide (Aß) accumulation, where the soluble oligomers of Aß (AßOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE: In this study, the neuroprotective abilities of Eu on synaptic failure induced by AßOs were analyzed. METHODS: Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AßOs. RESULTS: In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AßOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AßOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aß aggregation process inducing a decrease in AßOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION: We believe that Eu represents a novel lead that reduces the Aß toxicity, opening new research venues for lignans as neuroprotective agents.


Assuntos
Doença de Alzheimer , Lignanas , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Lignanas/farmacologia , Células PC12 , Fármacos Neuroprotetores/farmacologia
4.
Front Mol Neurosci ; 15: 1083189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733271

RESUMO

The Gelsemium elegans plant preparations have shown beneficial activity against common diseases, including chronic pain and anxiety. Nevertheless, their clinical uses are limited by their toxicity. Gelsemine, one of the most abundant alkaloids in the Gelsemium plants, have replicated these therapeutic and toxic actions in experimental behavioral models. However, the molecular targets underlying these biological effects remain unclear. The behavioral activity profile of gelsemine suggests the involvement of GABAA receptors (GABAARs), which are the main biological targets of benzodiazepines (BDZs), a group of drugs with anxiolytic, hypnotic, and analgesic properties. Here, we aim to define the modulation of GABAARs by gelsemine, with a special focus on the subtypes involved in the BDZ actions. The gelsemine actions were determined by electrophysiological recordings of recombinant GABAARs expressed in HEK293 cells, and of native receptors in cortical neurons. Gelsemine inhibited the agonist-evoked currents of recombinant and native receptors. The functional inhibition was not associated with the BDZ binding site. We determined in addition that gelsemine diminished the frequency of GABAergic synaptic events, likely through a presynaptic modulation. Our findings establish gelsemine as a negative modulator of GABAARs and of GABAergic synaptic function. These pharmacological features discard direct anxiolytic or analgesic actions of gelsemine through GABAARs but support a role of GABAARs on the alkaloid induced toxicity. On the other hand, the presynaptic effects of the alkaloid provide an additional mechanism to explain their beneficial effects. Collectively, our results contribute novel information to improve understanding of gelsemine actions in the mammalian nervous system.

5.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948050

RESUMO

α-Synuclein (αSyn) species can be detected in synaptic boutons, where they play a crucial role in the pathogenesis of Parkinson's Disease (PD). However, the effects of intracellular αSyn species on synaptic transmission have not been thoroughly studied. Here, using patch-clamp recordings in hippocampal neurons, we report that αSyn oligomers (αSynO), intracellularly delivered through the patch electrode, produced a fast and potent effect on synaptic transmission, causing a substantial increase in the frequency, amplitude and transferred charge of spontaneous synaptic currents. We also found an increase in the frequency of miniature synaptic currents, suggesting an effect located at the presynaptic site of the synapsis. Furthermore, our in silico approximation using docking analysis and molecular dynamics simulations showed an interaction between a previously described small anti-amyloid beta (Aß) molecule, termed M30 (2-octahydroisoquinolin-2(1H)-ylethanamine), with a central hydrophobic region of αSyn. In line with this finding, our empirical data aimed to obtain oligomerization states with thioflavin T (ThT) and Western blot (WB) indicated that M30 interfered with αSyn aggregation and decreased the formation of higher-molecular-weight species. Furthermore, the effect of αSynO on synaptic physiology was also antagonized by M30, resulting in a decrease in the frequency, amplitude, and charge transferred of synaptic currents. Overall, the present results show an excitatory effect of intracellular αSyn low molecular-weight species, not previously described, that are able to affect synaptic transmission, and the potential of a small neuroactive molecule to interfere with the aggregation process and the synaptic effect of αSyn, suggesting that M30 could be a potential therapeutic strategy for synucleinopathies.


Assuntos
Isoquinolinas/farmacologia , Neurônios/citologia , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Benzotiazóis/farmacologia , Células Cultivadas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Transmissão Sináptica
6.
Front Neurosci ; 15: 617821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679301

RESUMO

Alzheimer's disease (AD) is the most common cause of senile dementia worldwide, characterized by both cognitive and behavioral deficits. Amyloid beta peptide (Aß) oligomers (AßO) have been found to be responsible for several pathological mechanisms during the development of AD, including altered cellular homeostasis and synaptic function, inevitably leading to cell death. Such AßO deleterious effects provide a way for identifying new molecules with potential anti-AD properties. Available treatments minimally improve AD symptoms and do not extensively target intracellular pathways affected by AßO. Naturally-derived compounds have been proposed as potential modifiers of Aß-induced neurodysfunction and cytotoxicity based on their availability and chemical diversity. Thus, the aim of this study was to evaluate boldine, an alkaloid derived from the bark and leaves of the Chilean tree Peumus boldus, and its capacity to block some dysfunctional processes caused by AßO. We examined the protective effect of boldine (1-10 µM) in primary hippocampal neurons and HT22 hippocampal-derived cell line treated with AßO (24-48 h). We found that boldine interacts with Aß in silico affecting its aggregation and protecting hippocampal neurons from synaptic failure induced by AßO. Boldine also normalized changes in intracellular Ca2+ levels associated to mitochondria or endoplasmic reticulum in HT22 cells treated with AßO. In addition, boldine completely rescued the decrease in mitochondrial membrane potential (ΔΨm) and the increase in mitochondrial reactive oxygen species, and attenuated AßO-induced decrease in mitochondrial respiration in HT22 hippocampal cells. We conclude that boldine provides neuroprotection in AD models by both direct interactions with Aß and by preventing oxidative stress and mitochondrial dysfunction. Additional studies are required to evaluate the effect of boldine on cognitive and behavioral deficits induced by Aß in vivo.

7.
J Clin Lipidol ; 15(2): 366-374.e1, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33547002

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is an inherited disorder mainly caused by mutations in the LDL receptor (LDL-R) and characterized by elevation of low-density lipoprotein cholesterol (LDL-C) levels and premature cardiovascular disease. OBJECTIVE: In this study, we evaluated the clinical phenotype of the p.Asp47Asn, described as an uncertain pathogenic variant, and its effect on the structure of LDL-R and ligand interactions with apolipoproteins. METHODS: 27 children and adolescents with suspected FH diagnosis were recruited from a pediatric endocrinology outpatient clinic. Blood samples were collected after 12 h fasting for lipid profile analysis. DNA sequencing was performed for six FH-related genes by Ion Torrent PGM platform and copy number variation by MLPA. For index cases, a familial cascade screening was done restricted to the same mutation found in the index case. In silico analysis were developed to evaluate the binding capacity of LDL-R to apolipoproteins B100 and E. RESULTS: Lipid profile in children and adolescents demonstrated higher LDL-C levels in p.Asp47Asn carriers compared to the wild type genotype. In silico analysis predicted a reduction in the binding capacity of the ligand-binding modules LA1-2 of p.Asp47Asn LDL-R for ApoB100 and ApoE, which was not produced by local structural changes or folding defects but as a consequence of a decreased apparent affinity for both apolipoproteins. CONCLUSION: The clinical phenotype and the structural effects of p.Asp47Asn LDL-R mutation suggest that this variant associates to FH.


Assuntos
Variações do Número de Cópias de DNA , Hiperlipoproteinemia Tipo II , Adolescente , Adulto , Humanos , Fenótipo , Receptores de LDL
8.
Front Pharmacol ; 11: 1143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903667

RESUMO

Colchicine is a plant alkaloid that is widely used as a therapeutic agent. It is widely accepted that colchicine reduces the production of inflammatory mediators mainly by altering cytoskeleton dynamics due to its microtubule polymerization inhibitory activity. However, other lines of evidence have shown that colchicine exerts direct actions on the function of ion channels, which are independent of cytoskeleton alterations. Colchicine is able to modify the function of several pentameric ligand-gated ion channels, including glycine receptors (GlyRs). Previous electrophysiological studies have shown that colchicine act as an antagonist of GlyRs composed by the α 1 subunit. In addition, it was recently demonstrated that colchicine directly bind to the α 3 subunit of GlyRs. Interestingly, other studies have shown a main role of α 3GlyRs on chronic inflammatory pain. Nevertheless, the functional effects of colchicine on the α 3GlyR function are still unknown. Here, by using electrophysiological techniques and bioinformatics, we show that colchicine inhibited the function of the α 3GlyRs. Colchicine elicited concentration-dependent inhibitory effects on α 3GlyRs at micromolar range and decreased the apparent affinity for glycine. Single-channel recordings show that the colchicine inhibition is associated with a decrease in the open probability of the ion channel. Molecular docking assays suggest that colchicine preferentially bind to the orthosteric site in the closed state of the ion channel. Altogether, our results suggest that colchicine is a competitive antagonist of the α 3GlyRs.

9.
ACS Chem Neurosci ; 11(19): 3064-3076, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32886489

RESUMO

Oligomeric ß-amyloid peptide (Aß) is one of the main neurotoxic agents of Alzheimer's disease (AD). Oligomers associate to neuronal membranes, forming "pore-like" structures that cause intracellular calcium and neurotransmitter dyshomeostasis, leading to synaptic failure and death. Through molecular screening targeting the C terminal region of Aß, a region involved in the toxic properties of the peptide, we detected an FDA approved compound, gabapentin (GBP), with neuroprotective effects against Aß toxicity. At micromolar concentrations, GBP antagonized peptide aggregation over time and reduced the Aß absorbance plateau to 28% of control. In addition, GBP decreased Aß association to membranes by almost half, and the effects of Aß on intracellular calcium in hippocampal neurons were antagonized without causing effects on its own. Finally, we found that GBP was able to block the synaptotoxicity induced by Aß in hippocampal neurons, increasing post-synaptic currents from 1.7 ± 0.9 to 4.2 ± 0.7 fC and mean relative fluorescence intensity values of SV2, a synaptic protein, from 0.7 ± 0.09 to 1.00 ± 0.08. The results show that GBP can interfere with Aß-induced toxicity by blocking multiple steps, resulting in neuroprotection, which justifies advancing toward additional animal and human studies.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Gabapentina/farmacologia , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fragmentos de Peptídeos
11.
Neurobiol Dis ; 141: 104938, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434047

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. METHODS: Based on our previous study that showed that an Aß-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aß), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. RESULTS: In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aß peptide. Additionally, in vitro assays showed that M30 blocked Aß aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aß in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. DISCUSSION: Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. SIGNIFICANCE: Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aß-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aß. Because Aß toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Agregação Patológica de Proteínas/prevenção & controle , Animais , Simulação por Computador , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Agregação Patológica de Proteínas/metabolismo , Ratos
12.
Front Pharmacol ; 11: 167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32218730

RESUMO

Chronic pain is a common detrimental condition that affects around 20% of the world population. The current drugs to treat chronic pain states, especially neuropathic pain, have a limited clinical efficiency and present significant adverse effects that complicates their regular use. Recent studies have proposed new therapeutic strategies focused on the pharmacological modulation of G-protein-coupled receptors, transporters, enzymes, and ion channels expressed on the nociceptive pathways. The present work intends to summarize recent advances on the pharmacological modulation of pentameric ligand-gated ion channels, which plays a key role in pain processing. Experimental data have shown that novel allosteric modulators targeting the excitatory nicotinic acetylcholine receptor, as well as the inhibitory GABAA and glycine receptors, reverse chronic pain-related behaviors in preclinical assays. Collectively, these evidences strongly suggest the pharmacological modulation of pentameric ligand-gated ion channels is a promising strategy towards the development of novel therapeutics to treat chronic pain states in humans.

13.
Sci Rep ; 10(1): 4804, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179786

RESUMO

Glycine receptors (GlyRs) are anion-permeable pentameric ligand-gated ion channels (pLGICs). The GlyR activation is critical for the control of key neurophysiological functions, such as motor coordination, respiratory control, muscle tone and pain processing. The relevance of the GlyR function is further highlighted by the presence of abnormal glycinergic inhibition in many pathophysiological states, such as hyperekplexia, epilepsy, autism and chronic pain. In this context, previous studies have shown that the functional inhibition of  GlyRs containing the α3 subunit is a pivotal mechanism of pain hypersensitivity. This pathway involves the activation of EP2 receptors and the subsequent PKA-dependent phosphorylation of α3GlyRs within the intracellular domain (ICD), which decrease the GlyR-associated currents and enhance neuronal excitability. Despite the importance of this mechanism of glycinergic dis-inhibition associated with dysfunctional α3GlyRs, our current understanding of the molecular events involved is limited. Here, we report that the activation of PKA signaling pathway decreases the unitary conductance of α3GlyRs. We show in addition that the substitution of the PKA-targeted serine with a negatively charged residue within the ICD of α3GlyRs and of chimeric receptors combining bacterial GLIC and α3GlyR was sufficient to generate receptors with reduced conductance. Thus, our findings reveal a potential biophysical mechanism of glycinergic dis-inhibition and suggest that post-translational modifications of the ICD, such as phosphorylation, may shape the conductance of other pLGICs.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Receptores de Glicina/metabolismo , Receptores de Glicina/fisiologia , Substituição de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Receptores de Glicina/química , Receptores de Prostaglandina E Subtipo EP2 , Transdução de Sinais
14.
Front Pharmacol ; 10: 331, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024303

RESUMO

Glycine receptors (GlyRs) are chloride-permeable pentameric ligand-gated ion channels. The inhibitory activity of GlyRs is essential for many physiological processes, such as motor control and respiration. In addition, several pathological states, such as hyperekplexia, epilepsy, and chronic pain, are associated with abnormal glycinergic inhibition. Recent studies have pointed out that positive allosteric modulators targeting the GlyR α3 subunit (α3GlyR) displayed beneficial effects in chronic pain models. Interestingly, previous electrophysiological studies have shown that tropeines, which are a family of synthetic antagonists of the serotonin type 3 receptors (5-HT3Rs), potentiate the activity of GlyRs conformed by α1 subunits. However, despite its importance as a pharmacological target in chronic pain, it is currently unknown whether the α3GlyR function is modulated by tropeines. Using electrophysiological techniques and molecular docking simulations, here we show that tropeines are inhibitors of the α3GlyR function. Tropisetron, a prototypical tropeine, exerted concentration-dependent inhibitory effects on α3GlyRs at the low micromolar range. In addition, three other tropeines showed similar effects. Single-channel recordings show that tropisetron inhibition is associated with a decrease in the open probability of the ion channel. Molecular docking assays suggest that tropeines preferentially bind to an agonist-free, closed state of the ion channel. The tropeine binding occurs in a discrete pocket around the vicinity of the orthosteric site within the extracellular domain of α3GlyR. Thus, our results describe the pharmacological modulation of tropeines on α3GlyRs. These findings may contribute to the development of GlyR-selective tropeine derivatives for basic and/or clinical applications.

15.
ACS Chem Neurosci ; 10(5): 2551-2559, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30893555

RESUMO

Glycine receptors (GlyRs) are members of the pentameric ligand-gated ionic channel family (pLGICs) and mediate fast inhibitory neurotransmission in the brain stem and spinal cord. The function of GlyRs can be modulated by positive allosteric modulators (PAMs). So far, it is largely accepted that both the extracellular (ECD) and transmembrane (TMD) domains constitute the primary target for many of these PAMs. On the other hand, the contribution of the intracellular domain (ICD) to the PAM effects on GlyRs remains poorly understood. To gain insight about the role of the ICD in the pharmacology of GlyRs, we examined the contribution of each domain using a chimeric receptor. Two chimeras were generated, one consisting of the ECD of the prokaryotic homologue Gloeobacter violaceus ligand-gated ion channel (GLIC) fused to the TMD of the human α1GlyR lacking the ICD (Lily) and a second with the ICD (Lily-ICD). The sensitivity to PAMs of both chimeric receptors was studied using electrophysiological techniques. The Lily receptor showed a significant decrease in the sensitivity to four recognized PAMs. Remarkably, the incorporation of the ICD into the Lily background was sufficient to restore the wild-type α1GlyR sensitivity to these PAMs. Based on these data, we can suggest that the ICD is necessary to form a pLGIC having full sensitivity to positive allosteric modulators.


Assuntos
Regulação Alostérica/fisiologia , Receptores de Glicina/fisiologia , Regulação Alostérica/efeitos dos fármacos , Células Cultivadas , Depressores do Sistema Nervoso Central/farmacologia , Quimera , Cianobactérias , Etanol/farmacologia , Espaço Extracelular/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Membranas Intracelulares/fisiologia , Isoflurano/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Potenciais da Membrana/efeitos dos fármacos
16.
Mol Pharmacol ; 90(3): 318-25, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27401877

RESUMO

Glycine receptors (GlyR) are inhibitory Cys-loop ion channels that contribute to the control of excitability along the central nervous system (CNS). GlyR are found in the spinal cord and brain stem, and more recently they were reported in higher regions of the CNS such as the hippocampus and nucleus accumbens. GlyR are involved in motor coordination, respiratory rhythms, pain transmission, and sensory processing, and they are targets for relevant physiologic and pharmacologic modulators. Several studies with protein crystallography and cryoelectron microscopy have shed light on the residues and mechanisms associated with the activation, blockade, and regulation of pentameric Cys-loop ion channels at the atomic level. Initial studies conducted on the extracellular domain of acetylcholine receptors, ion channels from prokaryote homologs-Erwinia chrysanthemi ligand-gated ion channel (ELIC), Gloeobacter violaceus ligand-gated ion channel (GLIC)-and crystallized eukaryotic receptors made it possible to define the overall structure and topology of the Cys-loop receptors. For example, the determination of pentameric GlyR structures bound to glycine and strychnine have contributed to visualizing the structural changes implicated in the transition between the open and closed states of the Cys-loop receptors. In this review, we summarize how the new information obtained in functional, mutagenesis, and structural studies have contributed to a better understanding of the function and regulation of GlyR.


Assuntos
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Animais , Sítios de Ligação , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Estrutura Secundária de Proteína
17.
J Clin Invest ; 126(7): 2547-60, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27270175

RESUMO

Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αßGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αß heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-ß subunit interface and suggests that in α3ßGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation.


Assuntos
Hiperalgesia/metabolismo , Inflamação/metabolismo , Manejo da Dor/métodos , Receptores de Glicina/metabolismo , Medula Espinal/metabolismo , Sítio Alostérico , Animais , Feminino , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Moleculares , Neurônios , Dor , Fenóis/química , Fenilalanina/química , Fosforilação , Conformação Proteica , Proteínas Recombinantes/química
18.
Br J Pharmacol ; 173(14): 2263-77, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27128379

RESUMO

BACKGROUND AND PURPOSE: Gelsemine is one of the principal alkaloids produced by the Gelsemium genus of plants belonging to the Loganiaceae family. The extracts of these plants have been used for many years, for a variety of medicinal purposes. Coincidentally, recent studies have shown that gelsemine exerts anxiolytic and analgesic effects on behavioural models. Several lines of evidence have suggested that these beneficial actions were dependent on glycine receptors, which are inhibitory neurotransmitter-gated ion channels of the CNS. However, it is currently unknown whether gelsemine can directly modulate the function of glycine receptors. EXPERIMENTAL APPROACH: We examined the functional effects of gelsemine on glycine receptors expressed in transfected HEK293 cells and in cultured spinal neurons by electrophysiological techniques. KEY RESULTS: Gelsemine directly modulated recombinant and native glycine receptors and exerted conformation-specific and subunit-selective effects. Gelsemine modulation was voltage-independent and was associated with differential changes in the apparent affinity for glycine and in the open probability of the ion channel. In addition, the alkaloid preferentially targeted glycine receptors in spinal neurons and showed only minor effects on GABAA and AMPA receptors. Furthermore, gelsemine significantly diminished the frequency of glycinergic and glutamatergic synaptic events without altering the amplitude. CONCLUSIONS AND IMPLICATIONS: Our results provide a pharmacological basis to explain, at least in part, the glycine receptor-dependent, beneficial and toxic effects of gelsemine in animals and humans. In addition, the pharmacological profile of gelsemine may open new approaches to the development of subunit-selective modulators of glycine receptors.


Assuntos
Alcaloides/farmacologia , Receptores de Glicina/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Receptores de Glicina/química , Relação Estrutura-Atividade
19.
Pharmacol Res ; 101: 18-29, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26158502

RESUMO

It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.


Assuntos
Comportamento/efeitos dos fármacos , Etanol/farmacologia , Receptores de Glicina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Anestésicos Gerais/farmacologia , Animais , Comportamento/fisiologia , Etanol/toxicidade , Humanos , Camundongos , Camundongos Mutantes , Modelos Neurológicos , Receptores de Glicina/química , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/fisiologia
20.
J Pharmacol Exp Ther ; 353(1): 80-90, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25589412

RESUMO

Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gßγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gßγ. Thus, we studied GlyR α1­α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) ­α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gßγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gßγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.


Assuntos
Etanol/farmacologia , Receptores de Glicina/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Ratos , Receptores de Glicina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA