RESUMO
K+ channel Kir7.1 expressed at the apical membrane of the retinal pigment epithelium (RPE) plays an essential role in retinal function. An isoleucine-to-threonine mutation at position 120 of the protein is responsible for blindness-causing vitreo-retinal dystrophy. We have studied the molecular mechanism of action of Kir7.1-I120T in vitro by heterologous expression and in vivo in CRISPR-generated knockin mice. Full-size Kir7.1-I120T reaches the plasma membrane but lacks any activity. Analysis of Kir7.1 and the I120T mutant in mixed transfection experiments, and that of tandem tetrameric constructs made by combining wild type (WT) and mutant protomers, leads us to conclude that they do not form heterotetramers in vitro. Homozygous I120T/I120T mice show cleft palate and tracheomalacia and do not survive beyond P0, whereas heterozygous WT/I120T develop normally. Membrane conductance of RPE cells isolated from WT/WT and heterozygous WT/I120T mice is dominated by Kir7.1 current. Using Rb+ as a charge carrier, we demonstrate that the Kir7.1 current of WT/I120T RPE cells corresponds to approximately 50% of that in cells from WT/WT animals, in direct proportion to WT gene dosage. This suggests a lack of compensatory effects or interference from the mutated allele product, an interpretation consistent with results obtained using WT/- hemizygous mouse. Electroretinography and behavioral tests also show normal vision in WT/I120T animals. The hypomorphic ion channel phenotype of heterozygous Kir7.1-I120T mutants is therefore compatible with normal development and retinal function. The lack of detrimental effect of this degree of functional deficit might explain the recessive nature of Kir7.1 mutations causing human eye disease.NEW & NOTEWORTHY Human retinal pigment epithelium K+ channel Kir7.1 is affected by generally recessive mutations leading to blindness. We investigate one such mutation, isoleucine-to-threonine at position 120, both in vitro and in vivo in knockin mice. The mutated channel is inactive and in heterozygosis gives a hypomorphic phenotype with normal retinal function. Mutant channels do not interfere with wild-type Kir7.1 channels which are expressed concomitantly without hindrance, providing an explanation for the recessive nature of the disease.
Assuntos
Isoleucina , Retina , Camundongos , Humanos , Animais , Isoleucina/metabolismo , Retina/metabolismo , Cegueira/metabolismo , Mutação/genética , Treonina/metabolismoRESUMO
Inwardly rectifying K+ channel Kir7.1 is expressed in epithelia where it shares membrane localisation with the Na+/K+-pump. The ciliary body epithelium (CBE) of the eye is a determinant of intraocular pressure (IOP) through NaCl-driven fluid secretion of aqueous humour. In the present study we explored the presence Kir7.1 in this epithelium in the mouse and its possible functional role in the generation of IOP. Use heterozygous animals for total Kir7.1 knockout expressing ß-galactosidase under the control of Kir7.1 promoter, identified the expression of Kir7.1 in non-pigmented epithelial cells of CBE. Using conditional, floxed knockout Kir7.1 mice as negative controls, we found Kir7.1â¯at the basolateral membrane of the same CBE cell layer. This was confirmed using a knockin mouse expressing the Kir7.1 protein tagged with a haemagglutinin epitope. Measurements using the conditional knockout mouse show only a minor effect of Kir7.1 inactivation on steady-state IOP. Transient increases in IOP in response to general anaesthetics, or to water injection, are absent or markedly curtailed in Kir7.1-deficient mice. These results suggest a role for Kir7.1 in IOP regulation through a possible modulation of aqueous humour production by the CBE non-pigmented epithelial cells. The location of Kir7.1 in the CBE, together with the effect of its removal on dynamic changes in IOP, point to a possible role of the channel as a leak pathway preventing cellular overload of K+ during the secretion process. Kir7.1 could be used as a potential therapeutic target in pathological conditions leading to elevated intraocular pressure.
Assuntos
Corpo Ciliar/metabolismo , Células Epiteliais/metabolismo , Pressão Intraocular/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293â¯cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.
Assuntos
Amaurose Congênita de Leber/genética , Mutação/genética , Especificidade de Órgãos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Splicing de RNA/genética , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Peptídeos/genética , Potássio/metabolismo , Inibidores de Proteassoma/farmacologia , Splicing de RNA/efeitos dos fármacosRESUMO
Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb+ currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It might therefore become a useful tool to unravel Kir7.1 function in the different organs where it is expressed.
RESUMO
KEY POINTS: K+ channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K+ channel, but the secretory process survives after genetic inactivation of the K+ channel in the mouse. Here we use double mutant mice to investigate which alternative K+ channels come into action to compensate for the absence of KCNQ1-KCNE3 K+ channels. Our data establish that whilst Ca2+ -activated KCa 3.1 channels are not involved, K2P two-pore domain TASK-2 K+ channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K+ channels that contribute to the robustness of the cAMP-activated anion secretion process. ABSTRACT: Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl- channels and requires the simultaneous activity of basolateral K+ channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K+ channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 ß-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K+ conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca2+ -dependent anion secretion can also be supported by Ca2+ -dependent KCa 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of KCa 3.1 and KCNQ1-KCNE3 K+ channel activity. We show that the K2P K+ channel TASK-2 is expressed in the epithelium of the small and large intestine. Tetrapentylammonium, a TASK-2 inhibitor, abolishes anion secretory current remaining in the absence of KCNQ1-KCNE3 activity. A double mutant mouse lacking both KCNQ1-KCNE3 and TASK-2 showed a much reduced cAMP-mediated anion secretion compared to that observed in the single KCNQ1-KCNE3 deficient mouse. We conclude that KCNQ1-KCNE3 and TASK-2 play major roles in the intestinal anion and fluid secretory phenotype. The persistence of an, admittedly reduced, secretory activity in the absence of these two conductances suggests that further additional K+ channel(s) as yet unidentified contribute to the robustness of the intestinal anion secretory process.
Assuntos
Cloretos/metabolismo , Intestinos/fisiologia , Canal de Potássio KCNQ1/fisiologia , Mutação , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos TransgênicosRESUMO
Kir7.1 is an inwardly rectifying K+ channel of the Kir superfamily encoded by the kcnj13 gene. Kir7.1 is present in epithelial tissues where it colocalizes with the Na+/K+-pump probably serving to recycle K+ taken up by the pump. Human mutations affecting Kir7.1 are associated with retinal degeneration diseases. We generated a mouse lacking Kir7.1 by ablation of the Kcnj13 gene. Homozygous mutant null mice die hours after birth and show cleft palate and moderate retardation in lung development. Kir7.1 is expressed in the epithelium covering the palatal processes at the time at which palate sealing takes place and our results suggest it might play an essential role in late palatogenesis. Our work also reveals a second unexpected role in the development and the physiology of the respiratory system, where Kir7.1 is expressed in epithelial cells all along the respiratory tree.
Assuntos
Fissura Palatina/patologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Animais , Animais Recém-Nascidos , Peso Corporal , Fissura Palatina/embriologia , Desenvolvimento Embrionário , Epitélio/metabolismo , Epitélio/patologia , Pulmão/anormalidades , Pulmão/embriologia , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de SobrevidaRESUMO
Mutations in the CLCNKB gene encoding the ClC-Kb Cl(-) channel cause Bartter syndrome, which is a salt-losing renal tubulopathy. Here, we investigate the functional consequences of seven mutations. When expressed in Xenopus laevis oocytes, four mutants carried no current (c.736G>C, p.Gly246Arg; c.1271G>A, p.Gly424Glu; c.1313G>A, p.Arg438His; c.1316T>C, p.Leu439Pro), whereas others displayed a 30%-60% reduction in conductance as compared with wild-type ClC-Kb (c.242T>C, p.Leu81Pro; c.274C>T, p.Arg92Trp; c.1052G>C, p.Arg351Pro). Anion selectivity and sensitivity to external Ca(2+) and H(+), typical of the ClC-Kb channel, were not modified in the partially active mutants. In oocytes, we found that all the mutations reduced surface expression with a profile similar to that observed for currents. In HEK293 cells, the currents in the mutants had similar profiles to those obtained in oocytes, except for p.Leu81Pro, which produced no current. Furthermore, p.Arg92Trp and p.Arg351Pro mutations did not modify the unit-conductance of closely related ClC-K1. Western blot analysis in HEK293 cells showed that ClC-Kb protein abundance was lower for the nonconducting mutants but similar to wild-type for other mutants. Overall, two classes of mutants can be distinguished: nonconducting mutants associated with low total protein expression, and partially conducting mutants with unaltered channel properties and ClC-Kb protein abundance.
Assuntos
Proteínas de Transporte de Ânions/fisiologia , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Adolescente , Adulto , Animais , Proteínas de Transporte de Ânions/metabolismo , Feminino , Células HEK293 , Humanos , Lactente , Masculino , Oócitos/metabolismo , Mutação Puntual , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto JovemRESUMO
Dent's disease is an X-linked recessive disorder affecting the proximal tubules. Mutations in the 2Cl(-)/H(+) exchanger ClC-5 gene CLCN5 are frequently associated with Dent's disease. Functional characterization of mutations of CLCN5 have helped to elucidate the physiopathology of Dent's disease and provided evidence that several different mechanisms underlie the ClC-5 dysfunction in Dent's disease. Modeling studies indicate that many CLCN5 mutations are located at the interface between the monomers of ClC-5, demonstrating that this protein region plays an important role in Dent's disease. On the basis of functional data, CLCN5 mutations can be divided into three different classes. Class 1 mutations impair processing and folding, and as a result, the ClC-5 mutants are retained within the endoplasmic reticulum and targeted for degradation by quality control mechanisms. Class 2 mutations induce a delay in protein processing and reduce the stability of ClC-5. As a consequence, the cell surface expression and currents of the ClC-5 mutants are lower. Class 3 mutations do not alter the trafficking of ClC-5 to the cell surface and early endosomes but induce altered electrical activity. Here, we discuss the functional consequences of the three classes of CLCN5 mutations on ClC-5 structure and function.
Assuntos
Canais de Cloreto/genética , Doença de Dent/genética , Mutação/genética , Canais de Cloreto/química , Doença de Dent/fisiopatologia , Retículo Endoplasmático/fisiologia , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologiaRESUMO
The importance of intracellular pH (pH(i)) in the regulation of diverse cellular activities ranging from cell proliferation and differentiation to cell cycle, migration and apoptosis has long been recognised. More recently, extracellular pH (pH0), in particular that of relatively inaccessible compartments or domains that occur between cells in tissues, has begun to be acknowledged as a relevant signal in cell regulation. This should not be surprising given the abundant reports highlighting the pH0-dependence of the activity of membrane proteins facing the extracellular space such as receptors, transporters, ion channels and enzymes. Changes in pH affect the ionisation state of proteins through the effect on their titratable groups. There are proteins, however, which respond to pH shifts with conformational changes that are crucial for catalysis or transport activity. In such cases protons act as signalling molecules capable of eliciting fast and localised responses. We provide examples of ion channels that appear fastidiously designed to respond to extracellular pH in a manner that suggests specific functions in transporting epithelia. We shall also present ideas as to how these channels participate in complex transepithelial transport processes and provide preliminary experiments illustrating a new way to gauge pH0 in confined spaces of native epithelial tissue.