Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Gastroenterology ; 160(5): 1694-1708.e3, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33388316

RESUMO

BACKGROUND & AIMS: Patients with inflammatory bowel disease (IBD) demonstrate nutritional selenium deficiencies and are at greater risk of developing colon cancer. Previously, we determined that global reduction of the secreted antioxidant selenium-containing protein, selenoprotein P (SELENOP), substantially increased tumor development in an experimental colitis-associated cancer (CAC) model. We next sought to delineate tissue-specific contributions of SELENOP to intestinal inflammatory carcinogenesis and define clinical context. METHODS: Selenop floxed mice crossed with Cre driver lines to delete Selenop from the liver, myeloid lineages, or intestinal epithelium were placed on an azoxymethane/dextran sodium sulfate experimental CAC protocol. SELENOP loss was assessed in human ulcerative colitis (UC) organoids, and expression was queried in human and adult UC samples. RESULTS: Although large sources of SELENOP, both liver- and myeloid-specific Selenop deletion failed to modify azoxymethane/dextran sodium sulfate-mediated tumorigenesis. Instead, epithelial-specific deletion increased CAC tumorigenesis, likely due to elevated oxidative stress with a resulting increase in genomic instability and augmented tumor initiation. SELENOP was down-regulated in UC colon biopsies and levels were inversely correlated with endoscopic disease severity and tissue S100A8 (calprotectin) gene expression. CONCLUSIONS: Although global selenium status is typically assessed by measuring liver-derived plasma SELENOP levels, our results indicate that the peripheral SELENOP pool is dispensable for CAC. Colonic epithelial SELENOP is the main contributor to local antioxidant capabilities. Thus, colonic SELENOP is the most informative means to assess selenium levels and activity in IBD patients and may serve as a novel biomarker for UC disease severity and identify patients most predisposed to CAC development.


Assuntos
Colite Ulcerativa/metabolismo , Neoplasias Associadas a Colite/prevenção & controle , Colite/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Estresse Oxidativo , Selenoproteína P/metabolismo , Adolescente , Animais , Azoximetano , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Criança , Pré-Escolar , Colite/induzido quimicamente , Colite/genética , Colite Ulcerativa/genética , Neoplasias Associadas a Colite/induzido quimicamente , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Colo/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Instabilidade Genômica , Humanos , Mucosa Intestinal/patologia , Fígado/metabolismo , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Selenoproteína P/genética
3.
Carcinogenesis ; 39(11): 1352-1358, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30084959

RESUMO

Selenoprotein P (SELENOP) is a major selenoenzyme in plasma and linked to antioxidant properties and possibly to lung cancer; however, supporting evidence is limited. We investigated the association between pre-diagnostic plasma SELENOP concentration and lung cancer risk in a case-control study of 403 cases and 403 individually matched controls nested within the Shanghai Men's Health Study. SELENOP concentration in pre-diagnostic plasma samples was measured by a sandwich enzyme-linked immunosorbent assay. Cases were diagnosed with lung cancer between 2003 and 2010. Multivariate conditional logistic regression was used to estimate odds ratios (OR) and the corresponding 95% confidence intervals (CI) for studying the association between plasma SELENOP concentration and lung cancer risk. Cases had slightly lower plasma SELENOP concentration than controls (4.3 ± 1.2 versus 4.4 ± 1.1 mg/l, P difference = 0.09). However, the multivariate analysis showed no association between plasma SELENOP concentration and lung cancer risk among all participants (OR = 1.08, 95% CI = 0.54-2.14 for quartile 4 versus quartile 1), or by smoking status or tumor aggressiveness. In contrast, although the number of cases was limited, plasma SELENOP concentration was positively associated with lung adenocarcinoma risk (OR = 5.38, 95% CI = 1.89-15.35 for tertile 3 versus tertile 1), but not with squamous cell lung carcinoma (OR = 1.69, 95% CI = 0.43-6.70). Our study of adult men living in selenium non-deficient areas in China provides little support for the inverse association between pre-diagnostic plasma SELENOP concentration and lung cancer risk. Our finding of a positive association with risk of lung adenocarcinoma needs to be interpreted with caution.


Assuntos
Adenocarcinoma de Pulmão/sangue , Neoplasias Pulmonares/sangue , Saúde do Homem/estatística & dados numéricos , Neoplasias de Células Escamosas/sangue , Selênio/sangue , Selenoproteína P/sangue , Adenocarcinoma de Pulmão/epidemiologia , Adulto , Idoso , Estudos de Casos e Controles , China/epidemiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Modelos Logísticos , Neoplasias Pulmonares/epidemiologia , Masculino , Pessoa de Meia-Idade , Neoplasias de Células Escamosas/epidemiologia , Estudos Prospectivos , Risco , Fumar/efeitos adversos
4.
Oncotarget ; 8(16): 26312-26322, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28412747

RESUMO

According to the Nutritional Prevention of Cancer (NPC) trial, a selenized yeast supplement containing selenium, 200 mcg/day, decreased the incidence of total cancer, cancers of the prostate, colon and lung, and cancer mortality. The active agent in the selenized yeast supplement was assumed to be selenomethionine (SEMET), although the supplement had not been well speciated. The SELECT study, largely motivated by the NPC trial, enrolling nearly 40 times as many subjects, showed unequivocally that selenium 200 mcg/day, with selenium in the form of SEMET, does not protect selenium-replete men against prostate or other major cancer. The agent tested by SELECT, pure SEMET, could have been different from the selenized yeast tested in NPC. One of the selenium forms suspected of having chemopreventive effects, and which may have been present in the NPC agent, is methyl selenocysteine (MSC). This study, with 29 selenium-replete patients enrolled in a randomized, double-blind trial, compared the multiple-dose toxicity, pharmacokinetics and pharmacodynamics of MSC and SEMET. Patients were on trial for 84 days. No toxicity was observed. Although SEMET supplementation increased blood selenium concentration more than MSC did, neither form had a more than minimal impact on the two major selenoproteins: selenoprotein P(SEPP1) and glutathione peroxidase(GPX).


Assuntos
Suplementos Nutricionais , Selenocisteína/análogos & derivados , Selenometionina/administração & dosagem , Selenometionina/farmacocinética , Adulto , Idoso , Estudos de Casos e Controles , Quimioprevenção , Monitoramento de Medicamentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Selenocisteína/administração & dosagem , Selenocisteína/farmacocinética , Fatores de Tempo
5.
Open Biol ; 6(11)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27881738

RESUMO

Dynamic redefinition of the 10 UGAs in human and mouse selenoprotein P (Sepp1) mRNAs to specify selenocysteine instead of termination involves two 3' UTR structural elements (SECIS) and is regulated by selenium availability. In addition to the previously known human Sepp1 mRNA poly(A) addition site just 3' of SECIS 2, two further sites were identified with one resulting in 10-25% of the mRNA lacking SECIS 2. To address function, mutant mice were generated with either SECIS 1 or SECIS 2 deleted or with the first UGA substituted with a serine codon. They were fed on either high or selenium-deficient diets. The mutants had very different effects on the proportions of shorter and longer product Sepp1 protein isoforms isolated from plasma, and on viability. Spatially and functionally distinctive effects of the two SECIS elements on UGA decoding were inferred. We also bioinformatically identify two selenoprotein S mRNAs with different 5' sequences predicted to yield products with different N-termini. These results provide insights into SECIS function and mRNA processing in selenoprotein isoform diversity.


Assuntos
Mutação , RNA Mensageiro/metabolismo , Selenocisteína/genética , Selenoproteína P/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Animais , Códon de Terminação , Células Hep G2 , Humanos , Camundongos , Isoformas de Proteínas/genética , Selênio/metabolismo
6.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27645994

RESUMO

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Assuntos
Selenoproteínas/classificação , Selenoproteínas/genética , Humanos , Terminologia como Assunto
7.
Am J Clin Nutr ; 102(5): 1126-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26468123

RESUMO

BACKGROUND: Selenomethionine, which is the principal dietary form of selenium, is metabolized by the liver to selenide, which is the form of the element required for the synthesis of selenoproteins. The liver synthesizes selenium-rich selenoprotein P (SEPP1) and secretes it into the plasma to supply extrahepatic tissues with selenium. OBJECTIVES: We conducted a randomized controlled trial to determine whether cirrhosis is associated with functional selenium deficiency (the lack of selenium for the process of selenoprotein synthesis even though selenium intake is not limited) and, if it is, whether the deficiency is associated with impairment of selenomethionine metabolism. DESIGN: Patients with Child-Pugh (C-P) classes A, B, and C (mild, moderate, and severe, respectively) cirrhosis were supplemented with a placebo or supranutritional amounts of selenium as selenate (200 or 400 µg/d) or as selenomethionine (200 µg/d) for 4 wk. Plasma SEPP1 concentration and glutathione peroxidase (GPX) activity, the latter due largely to the selenoprotein GPX3 secreted by the kidneys, were measured before and after supplementation. RESULTS: GPX activity was increased more by both doses of selenate than by the placebo in C-P class B patients. The activity was not increased more by selenomethionine supplementation than by the placebo in C-P class B patients. Plasma selenium was increased more by 400 µg Se as selenate than by the placebo in C-P class C patients. Within the groups who responded to selenate, there was a considerable variation in responses. CONCLUSION: These results indicate that severe cirrhosis causes mild functional selenium deficiency in some patients that is associated with impaired metabolism of selenomethionine. This trial was registered at clinicaltrials.gov as NCT00271245.


Assuntos
Deficiências Nutricionais/dietoterapia , Suplementos Nutricionais , Cirrose Hepática/fisiopatologia , Estado Nutricional , Ácido Selênico/uso terapêutico , Selênio/deficiência , Adulto , Biomarcadores/sangue , Deficiências Nutricionais/sangue , Deficiências Nutricionais/epidemiologia , Deficiências Nutricionais/etiologia , Suplementos Nutricionais/efeitos adversos , Feminino , Glutationa Peroxidase/sangue , Humanos , Incidência , Masculino , Metionina/sangue , Pessoa de Meia-Idade , Projetos Piloto , Ácido Selênico/administração & dosagem , Ácido Selênico/efeitos adversos , Selênio/administração & dosagem , Selênio/sangue , Selênio/uso terapêutico , Selenometionina/efeitos adversos , Selenometionina/uso terapêutico , Selenoproteína P/sangue , Índice de Gravidade de Doença , Tennessee/epidemiologia
8.
J Clin Invest ; 125(7): 2646-60, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26053663

RESUMO

Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions.


Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Selenoproteína P/fisiologia , Animais , Antioxidantes/metabolismo , Apoptose , Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Dano ao DNA , Instabilidade Genômica , Haploinsuficiência , Macrófagos/classificação , Macrófagos/patologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/fisiologia , Estresse Oxidativo , Estrutura Terciária de Proteína , Selênio/administração & dosagem , Selênio/metabolismo , Selenoproteína P/deficiência , Selenoproteína P/genética , Microambiente Tumoral , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
9.
Annu Rev Nutr ; 35: 109-34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25974694

RESUMO

Selenium is regulated in the body to maintain vital selenoproteins and to avoid toxicity. When selenium is limiting, cells utilize it to synthesize the selenoproteins most important to them, creating a selenoprotein hierarchy in the cell. The liver is the central organ for selenium regulation and produces excretory selenium forms to regulate whole-body selenium. It responds to selenium deficiency by curtailing excretion and secreting selenoprotein P (Sepp1) into the plasma at the expense of its intracellular selenoproteins. Plasma Sepp1 is distributed to tissues in relation to their expression of the Sepp1 receptor apolipoprotein E receptor-2, creating a tissue selenium hierarchy. N-terminal Sepp1 forms are taken up in the renal proximal tubule by another receptor, megalin. Thus, the regulated whole-body pool of selenium is shifted to needy cells and then to vital selenoproteins in them to supply selenium where it is needed, creating a whole-body selenoprotein hierarchy.


Assuntos
Homeostase/fisiologia , Selênio/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico , Biomarcadores , Dieta , Suplementos Nutricionais , Nível de Saúde , Humanos , Túbulos Renais Proximais/metabolismo , Proteínas Relacionadas a Receptor de LDL/fisiologia , Fígado/fisiologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Necessidades Nutricionais , Especificidade de Órgãos , Selênio/deficiência , Selênio/farmacocinética , Selenocisteína/metabolismo , Selenometionina/metabolismo , Selenoproteína P/análise , Selenoproteína P/sangue , Selenoproteínas/biossíntese , Selenoproteínas/metabolismo
10.
PLoS One ; 9(7): e103486, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25068390

RESUMO

Selenium is transferred from the mouse dam to its neonate via milk. Milk contains selenium in selenoprotein form as selenoprotein P (Sepp1) and glutathione peroxidase-3 (Gpx3) as well as in non-specific protein form as selenomethionine. Selenium is also present in milk in uncharacterized small-molecule form. We eliminated selenomethionine from the mice in these experiments by feeding a diet that contained sodium selenite as the source of selenium. Selenium-replete dams with deletion of Sepp1 or Gpx3 were studied to assess the effects of these genes on selenium transfer to the neonate. Sepp1 knockout caused a drop in milk selenium to 27% of the value in wild-type milk and a drop in selenium acquisition by the neonates to 35%. In addition to decreasing milk selenium by eliminating Sepp1, deletion of Sepp1 causes a decline in whole-body selenium, which likely also contributes to the decreased transfer of selenium to the neonate. Deletion of Gpx3 did not decrease milk selenium content or neonate selenium acquisition by measurable amounts. Thus, when the dam is fed selenium-adequate diet (0.25 mg selenium/kg diet), milk Sepp1 transfers a large amount of selenium to neonates but the transfer of selenium by Gpx3 is below detection by our methods.


Assuntos
Glutationa Peroxidase/metabolismo , Leite/metabolismo , Selênio/metabolismo , Selenoproteína P/metabolismo , Animais , Animais Recém-Nascidos , Transporte Biológico , Eletroforese em Gel de Poliacrilamida , Feminino , Glutationa Peroxidase/genética , Hibridização In Situ , Masculino , Glândulas Mamárias Animais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Selenoproteína P/genética , Desmame , Aumento de Peso/genética
11.
Cancer Epidemiol Biomarkers Prev ; 23(7): 1238-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24762559

RESUMO

BACKGROUND: Epidemiologic studies have shown increased risks of lung cancer among adults with low blood levels of selenium, although evidence is inconsistent. In the United States, the incidence of lung cancer is higher and mean serum selenium levels lower among Blacks than Whites, but prior studies have not assessed the selenium-lung cancer association among Blacks. METHODS: From the prospective Southern Community Cohort Study, we identified 372 participants who provided blood samples and subsequently developed lung cancer. Selenoprotein P (SEPP1), the most abundant selenoprotein in plasma and a biomarker of selenium nutriture, was measured in the plasma from these individuals and from 716 matched controls. RESULTS: Mean SEPP1 levels were significantly (P < 0.0001) lower among Blacks than Whites. Conditional logistic regression models accounting for smoking revealed a significant trend of increasing OR of lung cancer with decreasing SEPP1 tertiles among Blacks (P = 0.0006) but not Whites (P = 0.69; Pinteraction = 0.10). The ORs and corresponding 95% confidence intervals of lung cancer risk among those with lowest versus highest tertile levels of SEPP1 were 2.4 (1.5-3.0) among Blacks and 1.1 (0.6-2.1) among Whites. CONCLUSIONS: Among a mostly low-income population in the southeastern United States, lower levels of SEPP1 were associated with an increasing risk of lung cancer among Blacks but not Whites. IMPACT: The combined findings of higher prevalence of low selenium status and higher lung cancer risk associated with low status raise the possibility that selenium deficiency may contribute to observed racial disparities in lung cancer incidence.


Assuntos
Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/epidemiologia , Selenoproteína P/sangue , Adulto , Idoso , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sudeste dos Estados Unidos/epidemiologia
12.
FASEB J ; 28(8): 3579-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24760755

RESUMO

Selenoprotein P (Sepp1) and its receptor, apolipoprotein E receptor 2 (apoER2), account for brain retaining selenium better than other tissues. The primary sources of Sepp1 in plasma and brain are hepatocytes and astrocytes, respectively. ApoER2 is expressed in varying amounts by tissues; within the brain it is expressed primarily by neurons. Knockout of Sepp1 or apoER2 lowers brain selenium from ∼120 to ∼50 ng/g and leads to severe neurodegeneration and death in mild selenium deficiency. Interactions of Sepp1 and apoER2 that protect against this injury have not been characterized. We studied Sepp1, apoER2, and brain selenium in knockout mice. Immunocytochemistry showed that apoER2 mediates Sepp1 uptake at the blood-brain barrier. When Sepp1(-/-) or apoER2(-/-) mice developed severe neurodegeneration caused by mild selenium deficiency, brain selenium was ∼35 ng/g. In extreme selenium deficiency, however, brain selenium of ∼12 ng/g was tolerated when both Sepp1 and apoER2 were intact in the brain. These findings indicate that tandem Sepp1-apoER2 interactions supply selenium for maintenance of brain neurons. One interaction is at the blood-brain barrier, and the other is within the brain. We postulate that Sepp1 inside the blood-brain barrier is taken up by neurons via apoER2, concentrating brain selenium in them.


Assuntos
Barreira Hematoencefálica/fisiologia , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/fisiologia , Degeneração Neural/prevenção & controle , Selênio/metabolismo , Selenoproteína P/fisiologia , Animais , Animais Congênicos , Transporte Biológico , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Capilares/metabolismo , Plexo Corióideo/embriologia , Plexo Corióideo/crescimento & desenvolvimento , Plexo Corióideo/metabolismo , Endocitose , Células Endoteliais/metabolismo , Feminino , Proteínas Relacionadas a Receptor de LDL/deficiência , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Neurônios/metabolismo , Gravidez , Selênio/administração & dosagem , Selênio/deficiência , Selênio/farmacocinética , Selenoproteína P/deficiência
13.
J Biol Chem ; 289(13): 9195-207, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24532792

RESUMO

Sepp1 supplies selenium to tissues via receptor-mediated endocytosis. Mice, rats, and humans have 10 selenocysteines in Sepp1, which are incorporated via recoding of the stop codon, UGA. Four isoforms of rat Sepp1 have been identified, including full-length Sepp1 and three others, which terminate at the second, third, and seventh UGA codons. Previous studies have shown that the longer Sepp1 isoforms bind to the low density lipoprotein receptor apoER2, but the mechanism remains unclear. To identify the essential residues for apoER2 binding, an in vitro Sepp1 binding assay was developed using different Sec to Cys substituted variants of Sepp1 produced in HEK293T cells. ApoER2 was found to bind the two longest isoforms. These results suggest that Sepp1 isoforms with six or more selenocysteines are taken up by apoER2. Furthermore, the C-terminal domain of Sepp1 alone can bind to apoER2. These results indicate that apoER2 binds to the Sepp1 C-terminal domain and does not require the heparin-binding site, which is located in the N-terminal domain. Site-directed mutagenesis identified three residues of Sepp1 that are necessary for apoER2 binding. Sequential deletion of extracellular domains of apoER2 surprisingly identified the YWTD ß-propeller domain as the Sepp1 binding site. Finally, we show that apoER2 missing the ligand-binding repeat region, which can result from cleavage at a furin cleavage site present in some apoER2 isoforms, can act as a receptor for Sepp1. Thus, longer isoforms of Sepp1 with high selenium content interact with a binding site distinct from the ligand-binding domain of apoER2 for selenium delivery.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Selênio/metabolismo , Selenoproteína P/metabolismo , Sequência de Aminoácidos , Animais , Endocitose , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Dados de Sequência Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Selenocisteína/metabolismo , Selenoproteína P/química , Alinhamento de Sequência , Especificidade por Substrato
14.
Free Radic Biol Med ; 69: 67-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24434121

RESUMO

Mouse selenoprotein P (Sepp1) consists of an N-terminal domain (residues 1-239) that contains one selenocysteine (U) as residue 40 in a proposed redox-active motif (-UYLC-) and a C-terminal domain (residues 240-361) that contains nine selenocysteines. Sepp1 transports selenium from the liver to other tissues by receptor-mediated endocytosis. It also reduces oxidative stress in vivo by an unknown mechanism. A previously uncharacterized plasma form of Sepp1 is filtered in the glomerulus and taken up by renal proximal convoluted tubule (PCT) cells via megalin-mediated endocytosis. We purified Sepp1 forms from the urine of megalin(-/-) mice using a monoclonal antibody to the N-terminal domain. Mass spectrometry revealed that the purified urinary Sepp1 consisted of N-terminal fragments terminating at 11 sites between residues 183 and 208. They were therefore designated Sepp1(UF). Because the N-terminal domain of Sepp1 has a thioredoxin fold, Sepp1(UF) were compared with full-length Sepp1, Sepp1(Δ240-361), and Sepp1(U40S) as a substrate of thioredoxin reductase-1 (TrxR1). All forms of Sepp1 except Sepp1(U40S), which contains serine in place of the selenocysteine, were TrxR1 substrates, catalyzing NADPH oxidation when coupled with H2O2 or tert-butylhydroperoxide as the terminal electron acceptor. These results are compatible with proteolytic cleavage freeing Sepp1(UF) from full-length Sepp1, the form that has the role of selenium transport, allowing Sepp1(UF) to function by itself as a peroxidase. Ultimately, plasma Sepp1(UF) and small selenium-containing proteins are filtered by the glomerulus and taken up by PCT cells via megalin-mediated endocytosis, preventing loss of selenium in the urine and providing selenium for the synthesis of glutathione peroxidase-3.


Assuntos
Glutationa Peroxidase/biossíntese , Oxirredução , Selenoproteínas/metabolismo , Tiorredoxina Redutase 1/metabolismo , Animais , Transporte Biológico , Endocitose , Peróxido de Hidrogênio/metabolismo , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Camundongos , Estrutura Terciária de Proteína , Selenocisteína/metabolismo , Selenoproteínas/química
15.
PLoS One ; 9(1): e84972, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465457

RESUMO

Biomarkers of selenium are necessary for assessing selenium status in humans, since soil variation hinders estimation of selenium intake from foods. In this study, we measured the concentration of plasma selenium, selenoprotein P (SEPP1), and glutathione peroxidase (GPX3) activity and their interindividual differences in 383 low-income blacks and whites selected from a stratified random sample of adults aged 40-79 years, who were participating in a long-term cohort study in the southeastern United States (US). We assessed the utility of these biomarkers to determine differences in selenium status and their association with demographic, socio-economic, dietary, and other indicators. Dietary selenium intake was assessed using a validated food frequency questionnaire designed for the cohort, matched with region-specific food selenium content, and compared with the US Recommended Dietary Allowances (RDA) set at 55 µg/day. We found that SEPP1, a sensitive biomarker of selenium nutritional status, was significantly lower among blacks than whites (mean 4.4 ± 1.1 vs. 4.7 ± 1.0 mg/L, p = 0.006), with blacks less than half as likely to have highest vs. lowest quartile SEPP1 concentration (Odds Ratio (OR) 0.4, 95% Confidence Interval (CI) 0.2-0.8). The trend in a similar direction was observed for plasma selenium among blacks and whites, (mean 115 ± 15.1 vs. 118 ± 17.7 µg/L, p = 0.08), while GPX3 activity did not differ between blacks and whites (136 ± 33.3 vs. 132 ± 33.5 U/L, p = 0.320). Levels of the three biomarkers were not correlated with estimated dietary selenium intake, except for SEPP1 among 10% of participants with the lowest selenium intake (≤ 57 µg/day). The findings suggest that SEPP1 may be an effective biomarker of selenium status and disease risk in adults and that low selenium status may disproportionately affect black and white cohort participants.


Assuntos
Biomarcadores/sangue , Selênio/sangue , Adulto , Idoso , População Negra , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sudeste dos Estados Unidos , População Branca
16.
PLoS One ; 8(7): e67845, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23861820

RESUMO

Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-ß pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.


Assuntos
Carcinogênese/metabolismo , Colite/metabolismo , Neoplasias do Colo/metabolismo , Selênio/deficiência , 8-Hidroxi-2'-Desoxiguanosina , Animais , Azoximetano , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/imunologia , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Sulfato de Dextrana , Dieta , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/imunologia , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Redução de Peso
18.
FASEB J ; 27(8): 3249-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23651543

RESUMO

Selenoprotein P (Sepp1) is taken up by receptor-mediated endocytosis for its selenium. The other extracellular selenoprotein, glutathione peroxidase-3 (Gpx3), has not been shown to transport selenium. Mice with genetic alterations of Sepp1, the Sepp1 receptors apolipoprotein E receptor-2 (apoER2) and megalin, and Gpx3 were used to investigate maternal-fetal selenium transfer. Immunocytochemistry (ICC) showed receptor-independent uptake of Sepp1 and Gpx3 in the same vesicles of d-13 visceral yolk sac cells, suggesting uptake by pinocytosis. ICC also showed apoER2-mediated uptake of maternal Sepp1 in the d-18 placenta. Thus, two selenoprotein-dependent maternal-fetal selenium transfer mechanisms were identified. Selenium was quantified in d-18 fetuses with the mechanisms disrupted. Maternal Sepp1 deletion, which lowers maternal whole-body selenium, decreased fetal selenium under selenium-adequate conditions but deletion of fetal apoER2 did not. Fetal apoER2 deletion did decrease fetal selenium, by 51%, under selenium-deficient conditions, verifying function of the placental Sepp1-apoER2 mechanism. Maternal Gpx3 deletion decreased fetal selenium, by 13%, but only under selenium-deficient conditions. These findings indicate that the selenoprotein uptake mechanisms ensure selenium transfer to the fetus under selenium-deficient conditions. The failure of their disruptions (apoER2 deletion, Gpx3 deletion) to affect fetal selenium under selenium-adequate conditions indicates the existence of an additional maternal-fetal selenium transfer mechanism.


Assuntos
Glutationa Peroxidase/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Troca Materno-Fetal/fisiologia , Selênio/metabolismo , Selenoproteína P/metabolismo , Animais , Transporte Biológico , Feminino , Glutationa Peroxidase/genética , Imuno-Histoquímica , Proteínas Relacionadas a Receptor de LDL/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Troca Materno-Fetal/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Placenta/embriologia , Placenta/metabolismo , Gravidez , Selenoproteína P/genética , Fatores de Tempo , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
19.
Cancer Res ; 73(3): 1245-55, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23221387

RESUMO

The glutathione peroxidases, a family of selenocysteine-containing redox enzymes, play pivotal roles in balancing the signaling, immunomodulatory, and deleterious effects of reactive oxygen species (ROS). The glutathione peroxidase GPX3 is the only extracellular member of this family, suggesting it may defend cells against ROS in the extracellular environment. Notably, GPX3 hypermethylation and underexpression occur commonly in prostate, gastric, cervical, thyroid, and colon cancers. We took a reverse genetics approach to investigate whether GPX3 would augment inflammatory colonic tumorigenesis, a process characterized by oxidative stress and inflammation, comparing Gpx3(-/-) mice in an established two-stage model of inflammatory colon carcinogenesis. Gpx3-deficient mice exhibited an increased tumor number, though not size, along with a higher degree of dysplasia. In addition, they exhibited increased inflammation with redistribution toward protumorigenic M2 macrophage subsets, increased proliferation, hyperactive WNT signaling, and increased DNA damage. To determine the impact of acute gene loss in an established colon cancer line, we silenced GPX3 in human Caco2 cells, resulting in increased ROS production, DNA damage and apoptosis in response to oxidative stress, combined with decreased contact-independent growth. Taken together, our results suggested an immunomodulatory role for GPX3 that limits the development of colitis-associated carcinoma.


Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Glutationa Peroxidase/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Células CACO-2 , Dano ao DNA , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
20.
J Biol Chem ; 287(48): 40414-24, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23038251

RESUMO

BACKGROUND: Sepp1 transports selenium, but its complete role in selenium homeostasis is not known. RESULTS: Deletion of Sepp1 in hepatocytes increases liver selenium at the expense of other tissues and decreases whole-body selenium by increasing excretion. CONCLUSION: Sepp1 production by hepatocytes retains selenium in the organism and distributes it from the liver to peripheral tissues. SIGNIFICANCE: Sepp1 is central to selenium homeostasis. Sepp1 is a widely expressed extracellular protein that in humans and mice contains 10 selenocysteine residues in its primary structure. Extra-hepatic tissues take up plasma Sepp1 for its selenium via apolipoprotein E receptor-2 (apoER2)-mediated endocytosis. The role of Sepp1 in the transport of selenium from liver, a rich source of the element, to peripheral tissues was studied using mice with selective deletion of Sepp1 in hepatocytes (Sepp1(c/c)/alb-cre(+/-) mice). Deletion of Sepp1 in hepatocytes lowered plasma Sepp1 concentration to 10% of that in Sepp1(c/c) mice (controls) and increased urinary selenium excretion, decreasing whole-body and tissue selenium concentrations. Under selenium-deficient conditions, Sepp1(c/c)/alb-cre(+/-) mice accumulated selenium in the liver at the expense of extra-hepatic tissues, severely worsening clinical manifestations of dietary selenium deficiency. These findings are consistent with there being competition for metabolically available hepatocyte selenium between the synthesis of selenoproteins and the synthesis of selenium excretory metabolites. In addition, selenium deficiency down-regulated the mRNA of the most abundant hepatic selenoprotein, glutathione peroxidase-1 (Gpx1), to 15% of the selenium-replete value, while reducing Sepp1 mRNA, the most abundant hepatic selenoprotein mRNA, only to 61%. This strongly suggests that Sepp1 synthesis is favored in the liver over Gpx1 synthesis when selenium supply is limited, directing hepatocyte selenium to peripheral tissues in selenium deficiency. We conclude that production of Sepp1 by hepatocytes is central to selenium homeostasis in the organism because it promotes retention of selenium in the body and effects selenium distribution from the liver to extra-hepatic tissues, especially under selenium-deficient conditions.


Assuntos
Hepatócitos/metabolismo , Selênio/metabolismo , Selenoproteína P/metabolismo , Animais , Transporte Biológico , Feminino , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Selenoproteína P/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA