Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746467

RESUMO

Animals coordinate their behavior with each other during both cooperative and agonistic social interactions. Such coordination often adopts the form of "turn taking", in which the interactive partners alternate the performance of a behavior. Apart from acoustic communication, how turn taking between animals is coordinated is not well understood. Furthermore, the neural substrates that regulate persistence in engaging in social interactions are poorly studied. Here, we use Siamese fighting fish ( Betta splendens ), to study visually-driven turn-taking aggressive behavior. Using encounters with conspecifics and with animations, we characterize the dynamic visual features of an opponent and the behavioral sequences that drive turn taking. Through a brain-wide screen of neuronal activity during coordinated and persistent aggressive behavior, followed by targeted brain lesions, we find that the caudal portion of the dorsomedial telencephalon, an amygdala-like region, promotes persistent participation in aggressive interactions, yet is not necessary for coordination. Our work highlights how dynamic visual cues shape the rhythm of social interactions at multiple timescales, and points to the pallial amygdala as a region controlling engagement in such interactions. These results suggest an evolutionarily conserved role of the vertebrate pallial amygdala in regulating the persistence of emotional states.

2.
J Neurophysiol ; 131(2): 304-310, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116612

RESUMO

Motor performance is monitored continuously by specialized brain circuits and used adaptively to modify behavior on a moment-to-moment basis and over longer time periods. During vocal behaviors, such as singing in songbirds, internal evaluation of motor performance relies on sensory input from the auditory and vocal-respiratory systems. Sensory input from the auditory system to the motor system, often referred to as auditory feedback, has been well studied in singing zebra finches (Taeniopygia guttata), but little is known about how and where nonauditory sensory feedback is evaluated. Here we show that brief perturbations in air sac pressure cause short-latency neural responses in the higher-order song control nucleus HVC (used as proper name), an area necessary for song learning and song production. Air sacs were briefly pressurized through a cannula in anesthetized or sedated adult male zebra finches, and neural responses were recorded in both nucleus parambigualis (PAm), a brainstem inspiratory center, and HVC, a cortical premotor nucleus. These findings show that song control nuclei in the avian song system are sensitive to perturbations directly targeted to vocal-respiratory, or viscerosensory, afferents and support a role for multimodal sensory feedback integration in modifying and controlling vocal control circuits.NEW & NOTEWORTHY This study presents the first evidence of sensory input from the vocal-respiratory periphery directly activating neurons in a motor circuit for vocal production in songbirds. It was previously thought that this circuit relies exclusively on sensory input from the auditory system, but we provide groundbreaking evidence for nonauditory sensory input reaching the higher-order premotor nucleus HVC, expanding our understanding of what sensory feedback may be available for vocal control.


Assuntos
Tentilhões , Animais , Masculino , Tentilhões/fisiologia , Aprendizagem/fisiologia , Tronco Encefálico , Retroalimentação Sensorial , Vocalização Animal/fisiologia
3.
Cell ; 186(3): 577-590.e16, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36693373

RESUMO

Pleasurable touch is paramount during social behavior, including sexual encounters. However, the identity and precise role of sensory neurons that transduce sexual touch remain unknown. A population of sensory neurons labeled by developmental expression of the G protein-coupled receptor Mrgprb4 detects mechanical stimulation in mice. Here, we study the social relevance of Mrgprb4-lineage neurons and reveal that these neurons are required for sexual receptivity and sufficient to induce dopamine release in the brain. Even in social isolation, optogenetic stimulation of Mrgprb4-lineage neurons through the back skin is sufficient to induce a conditioned place preference and a striking dorsiflexion resembling the lordotic copulatory posture. In the absence of Mrgprb4-lineage neurons, female mice no longer find male mounts rewarding: sexual receptivity is supplanted by aggression and a coincident decline in dopamine release in the nucleus accumbens. Together, these findings establish that Mrgprb4-lineage neurons initiate a skin-to-brain circuit encoding the rewarding quality of social touch.


Assuntos
Dopamina , Tato , Camundongos , Masculino , Feminino , Animais , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/metabolismo , Recompensa , Neurônios Dopaminérgicos/metabolismo , Optogenética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA