Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(13): 139701, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831992
2.
Phys Rev Lett ; 128(9): 096101, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302811

RESUMO

We develop the theory of anomalous elasticity in two-dimensional flexible materials with orthorhombic crystal symmetry. Remarkably, in the universal region, where characteristic length scales are larger than the rather small Ginzburg scale ∼10 nm, these materials possess an infinite set of flat phases. These phases corresponds to a stable line of fixed points and are connected by an emergent continuous symmetry. This symmetry enforces power law scaling with momentum of the anisotropic bending rigidity and Young's modulus, controlled by a single universal exponent-the very same along the whole line of fixed points. These anisotropic flat phases are uniquely labeled by the ratio of absolute Poisson's ratios. We apply our theory to phosphorene.

3.
Phys Rev Lett ; 124(19): 196801, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469575

RESUMO

The mesoscopic Stoner instability is an intriguing manifestation of symmetry breaking in isolated metallic quantum dots, underlined by the competition between single-particle energy and Heisenberg exchange interaction. Here we study this phenomenon in the presence of tunnel coupling to a reservoir. We analyze the spin susceptibility of electrons on the quantum dot for different values of couplings and temperature. Our results indicate the existence of a "quantum phase transition" at a critical value of the tunneling coupling, which is determined by the Stoner-enhanced exchange interaction. This quantum phase transition is a manifestation of the suppression of the Coleman-Weinberg mechanism of symmetry breaking, induced by coupling to the reservoir.

4.
Phys Rev E ; 101(3-1): 033005, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289966

RESUMO

It is shown that the anomalous elasticity of membranes affects the profile and thermodynamics of a bubble in van der Waals heterostructures. Our theory generalizes the nonlinear plate theory as well as the membrane theory of the pressurised blister test to incorporate the power-law scale dependence of the bending rigidity and Young's modulus of a two-dimensional crystalline membrane. This scale dependence, caused by long-range interaction of relevant thermal fluctuations (flexural phonons), is responsible for the nonlinear Hooke law observed recently in graphene. It is shown that this anomalous elasticity affects the dependence of the maximal height of the bubble as a function of its radius and temperature. We determine the characteristic temperature above which the anomalous elasticity is important. It is suggested that, for graphene-based van der Waals heterostructures, the predicted anomalous regime is experimentally accessible at room temperature.

5.
Phys Rev Lett ; 125(25): 256604, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416393

RESUMO

The interplay of interactions and disorder in two-dimensional (2D) electron systems has actively been studied for decades. The paradigmatic approach involves starting with a clean Fermi liquid and perturbing the system with both disorder and interactions. Instead, we start with a clean non-Fermi liquid near a 2D ferromagnetic quantum critical point and consider the effects of disorder. In contrast with the disordered Fermi liquid, we find that our model does not suffer from runaway flows to strong coupling and the system has a marginally stable fixed point with perfect conduction.

6.
J Phys Condens Matter ; 30(44): 445801, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30207299

RESUMO

We report the results of experimental and theoretical studies of Eu-doped Bi2Se3 thin films with extremely inhomogeneous distribution of magnetic component. The obtained electron microscopy images suggest that Eu atoms are concentrated within platelet-like nanoinclusions. The number of inclusions grows with the increase in Eu content, x. Moreover, at relatively high x values, the stacks of platelets (inclusions located one under another) become rather frequent. A comparative analysis of magnetic properties of the films under study reveals no pronounced changes of their temperature dependence with the increase in x, which, however, leads to the decrease in the average magnetic moment [Formula: see text] per Eu atom. A theoretical analysis of different mechanisms contributing to a possible magnetic ordering in the Eu-doped films demonstrates that at small distances (i.e. within a platelet) a dominant contribution is related to the RKKY interaction via electrons in the bulk, while the ordering at inter-platelet distances is governed by magnetic dipole-dipole interaction. The latter implies the antiferromagnetic ordering within the stacks of platelets explaining a drop of [Formula: see text] per Eu atom. We employ the model of a metallic spin glass to estimate the transition temperature, characterising the interaction within the ensemble of randomly distributed magnetic platelets. This estimate gives satisfactory agreement with the experiment, even if we take into account a finite film thickness, thus, neglecting the interaction anisotropy and including only the antiferromagnetism related to the stacking. While the overall contribution of interface Dirac electrons is damped in the systems under study, we argue that the obtained results can be used for the investigation of ultrathin films with analogous impurity profile, where this contribution should be clearly pronounced.

7.
Nat Commun ; 6: 7298, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26099565

RESUMO

Charged plasma and Fermi liquid are two distinct states of electronic matter intrinsic to dilute two-dimensional electron systems at elevated and low temperatures, respectively. Probing their thermodynamics represents challenge because of lack of an adequate technique. Here, we report a thermodynamic method to measure the entropy per electron in gated structures. Our technique appears to be three orders of magnitude superior in sensitivity to a.c. calorimetry, allowing entropy measurements with only 10(8) electrons. This enables us to investigate the correlated plasma regime, previously inaccessible experimentally in two-dimensional electron systems in semiconductors. In experiments with clean two-dimensional electron system in silicon-based structures, we traced entropy evolution from the plasma to Fermi liquid regime by varying electron density. We reveal that the correlated plasma regime can be mapped onto the ordinary non-degenerate Fermi gas with an interaction-enhanced temperature-dependent effective mass. Our method opens up new horizons in studies of low-dimensional electron systems.

8.
Phys Rev Lett ; 111(6): 066601, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971596

RESUMO

We explore mesoscopic fluctuations and correlations of the local density of states (LDOS) near localization transition in a disordered interacting electronic system. It is shown that the LDOS multifractality survives in the presence of the Coulomb interaction. We calculate the spectrum of multifractal dimensions in 2+ϵ spatial dimensions and show that it differs from that in the absence of interaction. The multifractal character of fluctuations and correlations of the LDOS can be studied experimentally by scanning tunneling microscopy of two-dimensional and three-dimensional disordered structures.

9.
J Phys Condens Matter ; 24(15): 155301, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22436594

RESUMO

The cotunneling current through a two-level quantum dot weakly coupled to ferromagnetic leads is studied in the Coulomb blockade regime. The cotunneling current is calculated analytically under simple but realistic assumptions as follows: (i) the quantum dot is described by the universal Hamiltonian, (ii) it is doubly occupied, and (iii) it displays a fast spin relaxation. We find that the dependence of the differential conductance on the bias voltage is significantly affected by the exchange interaction on the quantum dot. In particular, for antiparallel magnetic configurations in the leads, the exchange interaction results in the appearance of interference-type contributions from the inelastic processes to the cotunneling current. Such dependence of the cotunneling current on the tunneling amplitude phases should also occur in multi-level quantum dots weakly coupled to ferromagnetic leads near the mesoscopic Stoner instabilities.

10.
Phys Rev Lett ; 108(1): 017002, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22304280

RESUMO

The influence of disorder on the temperature of superconducting transition (T{c}) is studied within the σ-model renormalization-group framework. Electron-electron interaction in particle-hole and Cooper channels is taken into account and assumed to be short range. Two-dimensional systems in the weak localization and antilocalization regime, as well as systems near mobility edge are considered. It is shown that in all these regimes Anderson localization leads to strong enhancement of T{c} related to the multifractality of wave functions. Screening of the long-range Coulomb interaction thus opens a promising direction for searching novel materials for high-T{c} superconductivity.

11.
Phys Rev Lett ; 101(5): 056801, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764415

RESUMO

Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any finite value of the tunneling conductance as the temperature goes to absolute zero. This novel quantity is fundamentally related to the nonsymmetrized current noise of the system. Our results display all of the superuniversal topological features of the theta angle concept that previously arose in the theory of the quantum Hall effect.

12.
Phys Rev Lett ; 100(20): 206804, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18518567

RESUMO

Energy relaxation is studied in the spin-polarized disordered electron systems in the diffusive regime. We derive a quantum kinetic equation in which the kernel of the electron-electron collision integral explicitly depends on the electron magnetization. As a consequence, the inelastic scattering rate has a nonmonotonic dependence on the spin polarization of the system.

13.
Phys Rev Lett ; 100(4): 046405, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18352313

RESUMO

We report a detailed scaling analysis of resistivity rho(T,n) measured for several high-mobility 2D electron systems in the vicinity of the 2D metal-insulator transition. We analyzed the data using the two-parameter scaling approach and general scaling ideas. This enables us to determine the critical electron density, two critical indices, and temperature dependence for the separatrix in the self-consistent manner. In addition, we reconstruct the empirical scaling function describing a two-parameter surface which fits well the rho(T,n) data.

14.
Phys Rev Lett ; 95(18): 189701; author reply 189702, 2005 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-16383954
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA