Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Cell Biol ; 186: 51-90, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705606

RESUMO

Technological advancements in fluorescence flow cytometry and an ever-expanding understanding of the complexity of the immune system, have led to the development of large flow cytometry panels, reaching up to 40 markers at the single-cell level. Full spectrum flow cytometry, that measures the full emission range of all the fluorophores present in the panel instead of only the emission peaks is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With the capacity to use larger and more complex staining panels, optimized protocols are required for the best panel design, panel validation and high-dimensional data analysis outcomes. In addition, for ex vivo experiments, tissue preparation methods for single-cell analysis should also be optimized to ensure that samples are of the highest quality and are truly representative of tissues in situ. Here we provide optimized step-by-step protocols for full spectrum flow cytometry panel design, tissue digestion and panel optimization to facilitate the analysis of challenging tissue types.


Assuntos
Citometria de Fluxo , Imunofenotipagem , Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Humanos , Análise de Célula Única/métodos , Coloração e Rotulagem/métodos , Corantes Fluorescentes/química , Animais
2.
JHEP Rep ; 6(5): 101038, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694959

RESUMO

Background & Aims: Liver diseases resulting from chronic HBV infection are a significant cause of morbidity and mortality. Vaccines that elicit T-cell responses capable of controlling the virus represent a treatment strategy with potential for long-term effects. Here, we evaluated vaccines that induce the activity of type I natural killer T (NKT) cells to limit viral replication and license stimulation of conventional antiviral T-cells. Methods: Vaccines were prepared by conjugating peptide epitopes to an NKT-cell agonist to promote co-delivery to antigen-presenting cells, encouraging NKT-cell licensing and stimulation of T cells. Activity of the conjugate vaccines was assessed in transgenic mice expressing the complete HBV genome, administered intravenously to maximise access to NKT cell-rich tissues. Results: The vaccines induced only limited antiviral activity in unmanipulated transgenic hosts, likely attributable to NKT-cell activation as T-cell tolerance to viral antigens is strong. However, in a model of chronic hepatitis B involving transfer of naive HBcAg-specific CD8+ T cells into the transgenic mice, which typically results in specific T-cell dysfunction without virus control, vaccines containing the targeted HBcAg epitope induced prolonged antiviral activity because of qualitatively improved T-cell stimulation. In a step towards a clinical product, vaccines were prepared using synthetic long peptides covering clusters of known HLA-binding epitopes and shown to be immunogenic in HLA transgenic mice. Predictions based on HLA distribution suggest a product containing three selected SLP-based vaccines could give >90 % worldwide coverage, with an average of 3.38 epitopes targeted per individual. Conclusions: The novel vaccines described show promise for further clinical development as a treatment for chronic hepatitis B. Impact and Implications: Although there are effective prophylactic vaccines for HBV infection, it is estimated that 350-400 million people worldwide have chronic hepatitis B, putting these individuals at significant risk of life-threatening liver diseases. Therapeutic vaccination aimed at activating or boosting HBV-specific T-cell responses holds potential as a strategy for treating chronic infection, but has so far met with limited success. Here, we show that a glycolipid-peptide conjugate vaccine designed to coordinate activity of type I NKT cells alongside conventional antiviral T cells has antiviral activity in a mouse model of chronic infection. It is anticipated that a product based on a combination of three such conjugates, each prepared using long peptides covering clusters of known HLA-binding epitopes, could be developed further as a treatment for chronic hepatitis B with broad global HLA coverage.

3.
Cytometry A ; 105(5): 388-393, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317641

RESUMO

The objective of titrating fluorochrome-labeled antibodies is to identify the optimal concentration for a given marker-fluorochrome pair that results in the best possible separation between the positive and negative cell populations, while minimizing the background within the negative population. Best practices in flow cytometry dictate that each new lot of antibody should be titrated on the sample of interest. However, many researchers routinely use large (30+) color panels due to recent technical advancements in fluorescence-based cytometry instrumentation which quickly leads to an unmanageable number of individual titrations. In this technical note, we provide evidence that antibodies can be effectively titrated in groups rather than individually, resulting in considerable time and cost savings. This approach streamlines the process, without compromising data quality, thereby enhancing the efficiency of setting up high-parameter cytometry experiments.


Assuntos
Anticorpos , Citometria de Fluxo , Corantes Fluorescentes , Citometria de Fluxo/métodos , Humanos , Corantes Fluorescentes/química , Anticorpos/imunologia
4.
Crit Rev Oncog ; 29(1): 31-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421712

RESUMO

The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.


Assuntos
Células T Matadoras Naturais , Vacinas , Humanos , Vacinação , Diferenciação Celular
5.
Nat Immunol ; 24(9): 1487-1498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474653

RESUMO

Malaria is caused by Plasmodium species transmitted by Anopheles mosquitoes. Following a mosquito bite, Plasmodium sporozoites migrate from skin to liver, where extensive replication occurs, emerging later as merozoites that can infect red blood cells and cause symptoms of disease. As liver tissue-resident memory T cells (Trm cells) have recently been shown to control liver-stage infections, we embarked on a messenger RNA (mRNA)-based vaccine strategy to induce liver Trm cells to prevent malaria. Although a standard mRNA vaccine was unable to generate liver Trm or protect against challenge with Plasmodium berghei sporozoites in mice, addition of an agonist that recruits T cell help from type I natural killer T cells under mRNA-vaccination conditions resulted in significant generation of liver Trm cells and effective protection. Moreover, whereas previous exposure of mice to blood-stage infection impaired traditional vaccines based on attenuated sporozoites, mRNA vaccination was unaffected, underlining the potential for such a rational mRNA-based strategy in malaria-endemic regions.


Assuntos
Vacinas Antimaláricas , Malária , Animais , Camundongos , Células T de Memória , Malária/prevenção & controle , Fígado , Plasmodium berghei/genética , Linfócitos T CD8-Positivos
6.
Cancer Immunol Immunother ; 72(7): 2267-2282, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36881133

RESUMO

AIM: We have previously reported that polyfunctional T cell responses can be induced to the cancer testis antigen NY-ESO-1 in melanoma patients injected with mature autologous monocyte-derived dendritic cells (DCs) loaded with long NY-ESO-1-derived peptides together with α-galactosylceramide (α-GalCer), an agonist for type 1 Natural Killer T (NKT) cells. OBJECTIVE: To assess whether inclusion of α-GalCer in autologous NY-ESO-1 long peptide-pulsed DC vaccines (DCV + α-GalCer) improves T cell responses when compared to peptide-pulsed DC vaccines without α-GalCer (DCV). DESIGN, SETTING AND PARTICIPANTS: Single-centre blinded randomised controlled trial in patients ≥ 18 years old with histologically confirmed, fully resected stage II-IV malignant cutaneous melanoma, conducted between July 2015 and June 2018 at the Wellington Blood and Cancer Centre of the Capital and Coast District Health Board. INTERVENTIONS: Stage I. Patients were randomised to two cycles of DCV or DCV + α-GalCer (intravenous dose of 10 × 106 cells, interval of 28 days). Stage II. Patients assigned to DCV + α-GalCer were randomised to two further cycles of DCV + α-GalCer or observation, while patients initially assigned to DCV crossed over to two cycles of DCV + α-GalCer. OUTCOME MEASURES: Primary: Area under the curve (AUC) of mean NY-ESO-1-specific T cell count detected by ex vivo IFN-γ ELISpot in pre- and post-treatment blood samples, compared between treatment arms at Stage I. Secondary: Proportion of responders in each arm at Stage I; NKT cell count in each arm at Stage I; serum cytokine levels at Stage I; adverse events Stage I; T cell count for DCV + α-GalCer versus observation at Stage II, T cell count before versus after cross-over. RESULTS: Thirty-eight patients gave written informed consent; 5 were excluded before randomisation due to progressive disease or incomplete leukapheresis, 17 were assigned to DCV, and 16 to DCV + α-GalCer. The vaccines were well tolerated and associated with increases in mean total T cell count, predominantly CD4+ T cells, but the difference between the treatment arms was not statistically significant (difference - 6.85, 95% confidence interval, - 21.65 to 7.92; P = 0.36). No significant improvements in T cell response were associated with DCV + α-GalCer with increased dosing, or in the cross-over. However, the NKT cell response to α-GalCer-loaded vaccines was limited compared to previous studies, with mean circulating NKT cell levels not significantly increased in the DCV + α-GalCer arm and no significant differences in cytokine response between the treatment arms. CONCLUSIONS: A high population coverage of NY-ESO-1-specific T cell responses was achieved with a good safety profile, but we failed to demonstrate that loading with α-GalCer provided an additional advantage to the T cell response with this cellular vaccine design. CLINICAL TRIAL REGISTRATION: ACTRN12612001101875. Funded by the Health Research Council of New Zealand.


Assuntos
Melanoma , Neoplasias Cutâneas , Masculino , Humanos , Adolescente , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/metabolismo , Peptídeos/metabolismo , Anticorpos/metabolismo , Citocinas/metabolismo , Células Dendríticas , Antígenos de Neoplasias , Melanoma Maligno Cutâneo
7.
Curr Protoc ; 2(7): e482, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819836

RESUMO

Full-spectrum flow cytometry is now routinely used in many laboratories internationally, and the demand for this technology is rapidly increasing. With capacity to use larger and more complex staining panels, standardized protocols are required for optimal panel design and analysis. Importantly, for ex vivo analysis, tissue preparation methods also need to be optimized to ensure samples are truly representative of tissues in situ. This is particularly relevant given the recent interest in adaptive immune cells that form residency in specific organs. Here we provide optimized protocols for tissue processing and phenotyping of memory T cells and natural killer T (NKT) cell subsets from liver, lung, spleen, and lymph node using full-spectrum flow cytometry. We provide a 21-color antibody panel for identification of different memory subsets, including tissue-resident memory T (TRM ) cells, which are increasingly regarded as important effectors in adaptive immunity. We show that processing procedures can affect outcomes, with liver TRM cells particularly sensitive to heat, such that accurate evaluation requires fast processing at defined temperatures. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Processing mouse liver for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 2: Processing mouse spleen for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 3: Processing mouse lungs for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 4: Processing mouse lymph nodes for flow cytometric analysis of memory T and NKT cell subsets Basic Protocol 5: Staining and flow cytometric analysis of samples for memory T and NKT cell subsets Support Protocol: Obtaining cell counts from flow cytometry data.


Assuntos
Células T Matadoras Naturais , Animais , Citometria de Fluxo/métodos , Camundongos , Fenótipo , Baço , Coloração e Rotulagem
8.
Clin Transl Immunology ; 11(7): e1401, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795321

RESUMO

Objectives: Metastasis is the principal cause of breast cancer mortality. Vaccines targeting breast cancer antigens have yet to demonstrate clinical efficacy, and there remains an unmet need for safe and effective treatment to reduce the risk of metastasis, particularly for people with triple-negative breast cancer (TNBC). Certain glycolipids can act as vaccine adjuvants by specifically stimulating natural killer T (NKT) cells to provide a universal form of T-cell help. Methods: We designed and made a series of conjugate vaccines comprising a prodrug of the NKT cell-activating glycolipid α-galactosylceramide covalently linked to tumor-expressed peptides, and assessed these using E0771- and 4T1-based breast cancer models in vivo. We employed peptides from the model antigen ovalbumin and from clinically relevant breast cancer antigens HER2 and NY-ESO-1. Results: Glycolipid-peptide conjugate vaccines that activate NKT cells led to antigen-presenting cell activation, induced inflammatory cytokines, and, compared with peptide alone or admixed peptide and α-galactosylceramide, specifically enhanced CD8+ T-cell responses against tumor-associated peptides. Primary tumor growth was delayed by vaccination in all tumor models. Using 4T1-based cell lines expressing HER2 or NY-ESO-1, a single administration of the relevant conjugate vaccine prevented tumor colonisation of the lung following intravenous inoculation of tumor cells or spontaneous metastasis from breast, respectively. Conclusion: Glycolipid-peptide conjugate vaccines that activate NKT cells prevent lung metastasis in breast cancer models and warrant investigation as adjuvant therapies for high-risk breast cancer.

9.
Oncoimmunology ; 11(1): 2081009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712122

RESUMO

Intratumoural administration of unmethylated cytosine-phosphate-guanine motifs (CpG) to stimulate toll-like receptor (TLR)-9 has been shown to induce tumour regression in preclinical studies and some efficacy in the clinic. Because activated natural killer T (NKT) cells can cooperate with pattern-recognition via TLRs to improve adaptive immune responses, we assessed the impact of combining a repeated dosing regimen of intratumoural CpG with a single intratumoural dose of the NKT cell agonist α-galactosylceramide (α-GalCer). The combination was superior to CpG alone at inducing regression of established tumours in several murine tumour models, primarily mediated by CD8+ T cells. An antitumour effect on distant untreated tumours (abscopal effect) was reliant on sustained activity of NKT cells and was associated with infiltration of KLRG1+ NKT cells in tumours and draining lymph nodes at both injected and untreated distant sites. Cytometric analysis pointed to increased exposure to type I interferon (IFN) affecting many immune cell types in the tumour and lymphoid organs. Accordingly, antitumour activity was lost in animals in which dendritic cells (DCs) were incapable of signaling through the type I IFN receptor. Studies in conditional ablation models showed that conventional type 1 DCs and plasmacytoid DCs were required for the response. In tumour models where the combined treatment was less effective, the addition of tumour-antigen derived peptide, preferably conjugated to α-GalCer, significantly enhanced the antitumour response. The combination of TLR ligation, NKT cell agonism, and peptide delivery could therefore be adapted to induce responses to both known and unknown antigens.


Assuntos
Células T Matadoras Naturais , Neoplasias , Animais , Linfócitos T CD8-Positivos , Citosina/metabolismo , Citosina/farmacologia , Guanina/metabolismo , Guanina/farmacologia , Interferon gama , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Camundongos , Células T Matadoras Naturais/metabolismo , Neoplasias/tratamento farmacológico , Fosfatos/metabolismo , Fosfatos/farmacologia
10.
Oxf Open Immunol ; 2(1): iqab013, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36845569

RESUMO

Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.

11.
Mol Immunol ; 130: 1-6, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33340930

RESUMO

The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.


Assuntos
Galactosilceramidas/uso terapêutico , Imunoterapia/métodos , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Neoplasias/terapia , Adjuvantes Imunológicos/uso terapêutico , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/uso terapêutico , Galactosilceramidas/farmacologia , Humanos , Ativação Linfocitária/fisiologia , Células T Matadoras Naturais/fisiologia , Células T Matadoras Naturais/transplante , Neoplasias/imunologia
12.
Cancers (Basel) ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352882

RESUMO

Signalling through pattern recognition receptors (PRRs) leads to strong proinflammatory responses, enhancing the activity of antigen presenting cells and shaping adaptive immune responses against tumour associated antigens. Unfortunately, toxicities associated with systemic administration of these agonists have limited their clinical use to date. Direct injection of PRR agonists into the tumour can enhance immune responses by directly modulating the cells present in the tumour microenvironment. This can improve local antitumour activity, but importantly, also facilitates systemic responses that limit tumour growth at distant sites. As such, this form of therapy could be used clinically where metastatic tumour lesions are accessible, or as neoadjuvant therapy. In this review, we summarise current preclinical data on intratumoural administration of PRR agonists, including new strategies to optimise delivery and impact, and combination studies with current and promising new cancer therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA