Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Targets ; 15(1): 63-74, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21110697

RESUMO

IMPORTANCE OF THE FIELD: Recent advances in the understanding of the oncogenesis of head and neck squamous cell carcinomas (HNSCC) have revealed multiple dysregulated signaling pathways. One frequently altered axis is the EGFR-PI3K-Akt-mTOR pathway. This pathway plays a central role in numerous cellular processes including metabolism, cell growth, apoptosis, survival and differentiation, which ultimately contributes to HNSCC progression. AREAS COVERED IN THIS REVIEW: Books, journals, databases and websites have been searched to provide a current review on the subject. WHAT THE READER WILL GAIN: This article reviews the current understanding of EGFR-PI3K-Akt-mTOR signaling in HNSCC, including the impact of both genetic and epigenetic alterations. This review further highlights the potential of targeting this signaling cascade as a promising therapeutic approach in the treatment of HNSCC. TAKE HOME MESSAGE: Genetic alterations of several nodes within this pathway, including both genetic and epigenetic changes, leading to either oncogene activation or inactivation of tumor suppressors have frequently been implicated in HNSCC. Consequently, drugs that target the central nodes of this pathway have become attractive for molecular oriented cancer therapies. Numerous preclinical and clinical studies are being performed in HNSCC; however, more studies are still needed to better understand the biology of this pathway.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatologia , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/fisiopatologia , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
BMC Microbiol ; 9: 2, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19123944

RESUMO

BACKGROUND: The chlamydiae alter many aspects of host cell biology, including the division process, but the molecular biology of these alterations remains poorly characterized. Chlamydial inclusion membrane proteins (Incs) are likely candidates for direct interactions with host cell cytosolic proteins, as they are secreted to the inclusion membrane and exposed to the cytosol. The inc gene CT223 is one of a sequential set of orfs that encode or are predicted to encode Inc proteins. CT223p is localized to the inclusion membrane in all tested C. trachomatis serovars. RESULTS: A plasmid transfection approach was used to examine the function of the product of CT223 and other Inc proteins within uninfected mammalian cells. Fluorescence microscopy was used to demonstrate that CT223, and, to a lesser extent, adjacent inc genes, are capable of blocking host cell cytokinesis and facilitating centromere supranumeracy defects seen by others in chlamydiae-infected cells. Both phenotypes were associated with transfection of plasmids encoding the carboxy-terminal tail of CT223p, a region of the protein that is likely exposed to the cytosol in infected cells. CONCLUSION: These studies suggest that certain Inc proteins block cytokinesis in C. trachomatis-infected cells. These results are consistent with the work of others showing chlamydial inhibition of host cell cytokinesis.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/fisiopatologia , Chlamydia trachomatis , Citocinese/fisiologia , Linhagem Celular , Centrossomo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica , Genes Bacterianos/genética , Células HeLa , Humanos , Fenótipo , Transporte Proteico , Transfecção
3.
J Bacteriol ; 190(21): 6970-82, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18723615

RESUMO

Renibacterium salmoninarum is the causative agent of bacterial kidney disease and a significant threat to healthy and sustainable production of salmonid fish worldwide. This pathogen is difficult to culture in vitro, genetic manipulation is challenging, and current therapies and preventative strategies are only marginally effective in preventing disease. The complete genome of R. salmoninarum ATCC 33209 was sequenced and shown to be a 3,155,250-bp circular chromosome that is predicted to contain 3,507 open-reading frames (ORFs). A total of 80 copies of three different insertion sequence elements are interspersed throughout the genome. Approximately 21% of the predicted ORFs have been inactivated via frameshifts, point mutations, insertion sequences, and putative deletions. The R. salmoninarum genome has extended regions of synteny to the Arthrobacter sp. strain FB24 and Arthrobacter aurescens TC1 genomes, but it is approximately 1.9 Mb smaller than both Arthrobacter genomes and has a lower G+C content, suggesting that significant genome reduction has occurred since divergence from the last common ancestor. A limited set of putative virulence factors appear to have been acquired via horizontal transmission after divergence of the species; these factors include capsular polysaccharides, heme sequestration molecules, and the major secreted cell surface antigen p57 (also known as major soluble antigen). Examination of the genome revealed a number of ORFs homologous to antibiotic resistance genes, including genes encoding beta-lactamases, efflux proteins, macrolide glycosyltransferases, and rRNA methyltransferases. The genome sequence provides new insights into R. salmoninarum evolution and may facilitate identification of chemotherapeutic targets and vaccine candidates that can be used for prevention and treatment of infections in cultured salmonids.


Assuntos
Arthrobacter/genética , Evolução Molecular , Doenças dos Peixes/microbiologia , Micrococcaceae/genética , Animais , Arthrobacter/classificação , Composição de Bases/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Micrococcaceae/classificação , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta/genética , Filogenia , RNA Ribossômico 16S/genética , Salmão , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA