Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geroscience ; 46(2): 1543-1560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653270

RESUMO

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.


Assuntos
Longevidade , Proteoma , Camundongos , Animais , Longevidade/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Receptores da Somatotropina
2.
Nat Commun ; 11(1): 3772, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728114

RESUMO

Selective and neutral forces shape human microbiota assembly in early life. The Tsimane are an indigenous Bolivian population with infant care-associated behaviors predicted to increase mother-infant microbial dispersal. Here, we characterize microbial community assembly in 47 infant-mother pairs from six Tsimane villages, using 16S rRNA gene amplicon sequencing of longitudinal stool and tongue swab samples. We find that infant consumption of dairy products, vegetables, and chicha (a fermented drink inoculated with oral microbes) is associated with stool microbiota composition. In stool and tongue samples, microbes shared between mothers and infants are more abundant than non-shared microbes. Using a neutral model of community assembly, we find that neutral processes alone explain the prevalence of 79% of infant-colonizing microbes, but explain microbial prevalence less well in adults from river villages with more regular access to markets. Our results underscore the importance of neutral forces during microbiota assembly. Changing lifestyle factors may alter traditional modes of microbiota assembly by decreasing the role of neutral processes.


Assuntos
Horticultura , Povos Indígenas , Microbiota , Adolescente , Adulto , Bolívia , Criança , Pré-Escolar , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S/genética , Língua/microbiologia , Adulto Jovem
3.
mBio ; 11(1)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964729

RESUMO

Psychosocial environments impact normative behavioral development in children, increasing the risk of problem behaviors and psychiatric disorders across the life span. Converging evidence demonstrates that early normative development is affected by the gut microbiome, which itself can be altered by early psychosocial environments. However, much of our understanding of the gut microbiome's role in early development stems from nonhuman animal models and predominately focuses on the first years of life, during peri- and postnatal microbial colonization. As a first step to identify if these findings translate to humans and the extent to which these relationships are maintained after initial microbial colonization, we conducted a metagenomic investigation among a cross-sectional sample of early school-aged children with a range of adverse experiences and caregiver stressors and relationships. Our results indicate that the taxonomic and functional composition of the gut microbiome correlates with behavior during a critical period of child development. Furthermore, our analysis reveals that both socioeconomic risk exposure and child behaviors associate with the relative abundances of specific taxa (e.g., Bacteroides and Bifidobacterium species) as well as functional modules encoded in their genomes (e.g., monoamine metabolism) that have been linked to cognition and health. While we cannot infer causality within this study, these findings suggest that caregivers may moderate the gut microbiome's link to environment and behaviors beyond the first few years of life.IMPORTANCE Childhood is a formative period of behavioral and biological development that can be modified, for better or worse, by the psychosocial environment that is in part determined by caregivers. Not only do our own genes and the external environment influence such developmental trajectories, but the community of microbes living in, on, and around our bodies-the microbiome-plays an important role as well. By surveying the gut microbiomes of a cross-sectional cohort of early school-aged children with a range of psychosocial environments and subclinical mental health symptoms, we demonstrated that caregiving behaviors modified the child gut microbiome's association to socioeconomic risk and behavioral dysregulation.


Assuntos
Cuidadores , Comportamento Infantil , Meio Ambiente , Microbioma Gastrointestinal , Animais , Criança , Feminino , Humanos , Masculino , Metagenoma , Metagenômica/métodos , Modelos Teóricos , Fatores Socioeconômicos
4.
Periodontol 2000 ; 82(1): 26-41, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31850642

RESUMO

In humans, the composition of microbial communities differs among body sites and between habitats within a single site. Patterns of variation in the distribution of organisms across time and space are referred to as "biogeography." The human oral cavity is a critical observatory for exploring microbial biogeography because it is spatially structured, easily accessible, and its microbiota has been linked to the promotion of both health and disease. The biogeographic features of microbial communities residing in spatially distinct, but ecologically similar, environments on the human body, including the subgingival crevice, have not yet been adequately explored. The purpose of this paper is twofold. First, we seek to provide the dental community with a primer on biogeographic theory, highlighting its relevance to the study of the human oral cavity. We summarize what is known about the biogeographic variation of dental caries and periodontitis and postulate that disease occurrence reflects spatial patterning in the composition and structure of oral microbial communities. Second, we present a number of methods that investigators can use to test specific hypotheses using biogeographic theory. To anchor our discussion, we apply each method to a case study and examine the spatial variation of the human subgingival microbiota in 2 individuals. Our case study suggests that the composition of subgingival communities may conform to an anterior-to-posterior gradient within the oral cavity. The gradient appears to be structured by both deterministic and nondeterministic processes, although additional work is needed to confirm these findings. A better understanding of biogeographic patterns and processes will lead to improved efficacy of dental interventions targeting the oral microbiota.


Assuntos
Cárie Dentária , Microbiota , Doenças Periodontais , Periodontite , Humanos , Boca
5.
Proc Natl Acad Sci U S A ; 114(42): 11181-11186, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973938

RESUMO

The diverse collections of microorganisms associated with humans and other animals, collectively referred to as their "microbiome," are critical for host health, but the mechanisms that govern their assembly are poorly understood. This has made it difficult to identify consistent host factors that explain variation in microbiomes across hosts, despite large-scale sampling efforts. While ecological theory predicts that the movement, or dispersal, of individuals can have profound and predictable consequences on community assembly, its role in the assembly of animal-associated microbiomes remains underexplored. Here, we show that dispersal of microorganisms among hosts can contribute substantially to microbiome variation, and is able to overwhelm the effects of individual host factors, in an experimental test of ecological theory. We manipulated dispersal among wild-type and immune-deficient myd88 knockout zebrafish and observed that interhost dispersal had a large effect on the diversity and composition of intestinal microbiomes. Interhost dispersal was strong enough to overwhelm the effects of host factors, largely eliminating differences between wild-type and immune-deficient hosts, regardless of whether dispersal occurred within or between genotypes, suggesting dispersal can independently alter the ecology of microbiomes. Our observations are consistent with a predictive model that assumes metacommunity dynamics and are likely mediated by dispersal-related microbial traits. These results illustrate the importance of microbial dispersal to animal microbiomes and motivate its integration into the study of host-microbe systems.


Assuntos
Distribuição Animal , Microbioma Gastrointestinal , Imunidade Inata , Peixe-Zebra/microbiologia , Animais , Animais Geneticamente Modificados , Fator 88 de Diferenciação Mieloide/genética , Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/genética
6.
Curr Opin Microbiol ; 38: 137-141, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28618368

RESUMO

The interactions between animal hosts and their associated microbiota can be studied at multiple spatial and conceptual scales, with each providing unique perspectives on the processes structuring host-microbe systems. Recently, zebrafish, Danio rerio, has emerged as a powerful model in which to study these interactions at many different scales. Controlled but simplified gnotobiotic experiments enable discovery of the molecules and cellular dynamics that shape host-microbe system development, whereas population level investigations of bacterial dispersal and transmission are beginning to reveal the processes shaping microbiota assembly across hosts. Here we review recent examples of these studies and discuss how the results can be integrated to better understand host-microbiota systems.


Assuntos
Escamas de Animais/microbiologia , Microbiota , Proteínas/análise , Peixe-Zebra/microbiologia , Animais , Ecossistema
7.
ISME J ; 11(7): 1630-1639, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28304369

RESUMO

All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1- zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.


Assuntos
Imunidade Adaptativa , Microbioma Gastrointestinal/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Animais , Deleção de Genes , Genótipo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microbiota , Filogenia
8.
ISME J ; 10(3): 644-54, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26339860

RESUMO

The assembly of resident microbial communities is an important event in animal development; however, the extent to which this process mirrors the developmental programs of host tissues is unknown. Here we surveyed the intestinal bacteria at key developmental time points in a sibling group of 135 individuals of a model vertebrate, the zebrafish (Danio rerio). Our survey revealed stage-specific signatures in the intestinal microbiota and extensive interindividual variation, even within the same developmental stage. Microbial community shifts were apparent during periods of constant diet and environmental conditions, as well as in concert with dietary and environmental change. Interindividual variation in the intestinal microbiota increased with age, as did the difference between the intestinal microbiota and microbes in the surrounding environment. Our results indicate that zebrafish intestinal microbiota assemble into distinct communities throughout development, and that these communities are increasingly different from the surrounding environment and from one another.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Peixe-Zebra/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Intestinos/microbiologia , Peixe-Zebra/crescimento & desenvolvimento
9.
ISME J ; 10(3): 655-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26296066

RESUMO

Despite their importance to host health and development, the communities of microorganisms associated with humans and other animals are characterized by a large degree of unexplained variation across individual hosts. The processes that drive such inter-individual variation are not well understood. To address this, we surveyed the microbial communities associated with the intestine of the zebrafish, Danio rerio, over developmental time. We compared our observations of community composition and distribution across hosts with that predicted by a neutral assembly model, which assumes that community assembly is driven solely by chance and dispersal. We found that as hosts develop from larvae to adults, the fit of the model to observed microbial distributions decreases, suggesting that the relative importance of non-neutral processes, such as microbe-microbe interactions, active dispersal, or selection by the host, increases as hosts mature. We also observed that taxa which depart in their distributions from the neutral prediction form ecologically distinct sub-groups, which are phylogenetically clustered with respect to the full metacommunity. These results demonstrate that neutral processes are sufficient to generate substantial variation in microbiota composition across individual hosts, and suggest that potentially unique or important taxa may be identified by their divergence from neutral distributions.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Larva/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Humanos , Larva/microbiologia , Modelos Animais , Filogenia
10.
Cell Host Microbe ; 18(5): 613-20, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26567512

RESUMO

Predicting host health status based on microbial community structure is a major goal of microbiome research. An implicit assumption of microbiome profiling for diagnostic purposes is that the proportional representation of different taxa determine host phenotypes. To test this assumption, we colonized gnotobiotic zebrafish with zebrafish-derived bacterial isolates and measured bacterial abundance and host neutrophil responses. Surprisingly, combinations of bacteria elicited immune responses that do not reflect the numerically dominant species. These data are consistent with a quantitative model in which the host responses to commensal species are additive but where various species have different per capita immunostimulatory effects. For example, one species has a high per capita immunosuppression that is mediated through a potent secreted factor. We conclude that the proportional representation of bacteria in a community does not necessarily predict its functional capacities; however, characterizing specific properties of individual species offers predictive insights into multi-species community function.


Assuntos
Microbiota , Neutrófilos/imunologia , Peixe-Zebra/imunologia , Aeromonas/imunologia , Animais , Vida Livre de Germes , Imunização , Modelos Animais , Modelos Biológicos , Shewanella/imunologia , Simbiose , Vibrio/imunologia , Peixe-Zebra/microbiologia
11.
mBio ; 6(6): e01163-15, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26507229

RESUMO

UNLABELLED: The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. IMPORTANCE: Zebrafish larvae, which are amenable to large-scale gnotobiotic studies, comprehensive sampling of their intestinal microbiota, and live imaging, are an excellent model for investigations of vertebrate intestinal colonization dynamics. We sought to develop a mutagenesis and tagging system in order to understand bacterial population dynamics and functional requirements during colonization of the larval zebrafish intestine. We explored changes in bacterial colonization dynamics and functional requirements when bacteria colonize a bacterium-free intestine, one previously colonized by their own species, or one colonized previously or simultaneously with a different species. This work provides a framework for rapid identification of colonization factors important under different colonization conditions. Furthermore, we demonstrate that when colonizing bacterial populations are very small, this approach is not accurate because random sampling of the input pool is sufficient to explain the distribution of inserts recovered from bacteria that colonized the intestines.


Assuntos
Aeromonas/crescimento & desenvolvimento , Intestinos/microbiologia , Consórcios Microbianos/fisiologia , Modelos Estatísticos , Vibrio/crescimento & desenvolvimento , Peixe-Zebra/microbiologia , Aeromonas/genética , Animais , Elementos de DNA Transponíveis , Vida Livre de Germes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Larva/anatomia & histologia , Larva/microbiologia , Consórcios Microbianos/genética , Interações Microbianas/genética , Modelos Animais , Mutagênese , Vibrio/genética , Peixe-Zebra/anatomia & histologia
12.
mBio ; 6(5): e00687-15, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26419876

RESUMO

UNLABELLED: Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE: The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


Assuntos
Gorduras na Dieta , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Peixe-Zebra/microbiologia , Animais , Análise por Conglomerados , Estudos Transversais , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
mBio ; 5(6)2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25516613

RESUMO

UNLABELLED: The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. IMPORTANCE: Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging.


Assuntos
Aeromonas/crescimento & desenvolvimento , Carga Bacteriana , Trato Gastrointestinal/microbiologia , Peixe-Zebra/microbiologia , Animais , Imageamento Tridimensional , Microscopia de Fluorescência , Análise Espaço-Temporal , Coloração e Rotulagem
14.
Biol Bull ; 223(1): 7-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22983029

RESUMO

Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high-resolution imaging of bacterial colonization of the intestine of Danio rerio, the zebrafish. The method allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional data sets generated by these imaging approaches require new strategies for image analysis. When integrated with other "omics" data sets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts.


Assuntos
Fenômenos Fisiológicos Bacterianos , Luz , Microscopia/métodos , Simbiose , Peixe-Zebra/microbiologia , Animais , Trato Gastrointestinal/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA