Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(11): e1011008, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37930961

RESUMO

The cuticles of ecdysozoan animals are barriers to material loss and xenobiotic insult. Key to this barrier is lipid content, the establishment of which is poorly understood. Here, we show that the p-glycoprotein PGP-14 functions coincidently with the sphingomyelin synthase SMS-5 to establish a polar lipid barrier within the pharyngeal cuticle of the nematode C. elegans. We show that PGP-14 and SMS-5 are coincidentally expressed in the epithelium that surrounds the anterior pharyngeal cuticle where PGP-14 localizes to the apical membrane. pgp-14 and sms-5 also peak in expression at the time of new cuticle synthesis. Loss of PGP-14 and SMS-5 dramatically reduces pharyngeal cuticle staining by Nile Red, a key marker of polar lipids, and coincidently alters the nematode's response to a wide-range of xenobiotics. We infer that PGP-14 exports polar lipids into the developing pharyngeal cuticle in an SMS-5-dependent manner to safeguard the nematode from environmental insult.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipídeos , Permeabilidade
2.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
3.
Nat Commun ; 14(1): 1816, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002199

RESUMO

Nematode parasites of humans and livestock pose a significant burden to human health, economic development, and food security. Anthelmintic drug resistance is widespread among parasites of livestock and many nematode parasites of humans lack effective treatments. Here, we present a nitrophenyl-piperazine scaffold that induces motor defects rapidly in the model nematode Caenorhabditis elegans. We call this scaffold Nemacol and show that it inhibits the vesicular acetylcholine transporter (VAChT), a target recognized by commercial animal and crop health groups as a viable anthelmintic target. We demonstrate that it is possible to create Nemacol analogs that maintain potent in vivo activity whilst lowering their affinity to the mammalian VAChT 10-fold. We also show that Nemacol enhances the ability of the anthelmintic Ivermectin to paralyze C. elegans and the ruminant nematode parasite Haemonchus contortus. Hence, Nemacol represents a promising new anthelmintic scaffold that acts through a validated anthelmintic target.


Assuntos
Anti-Helmínticos , Nematoides , Animais , Humanos , Caenorhabditis elegans , Proteínas Vesiculares de Transporte de Acetilcolina , Anti-Helmínticos/farmacologia , Ivermectina/farmacologia , Resistência a Medicamentos , Mamíferos
4.
Microb Cell Fact ; 21(1): 280, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587193

RESUMO

BACKGROUND: Over the 70 years since the introduction of plastic into everyday items, plastic waste has become an increasing problem. With over 360 million tonnes of plastics produced every year, solutions for plastic recycling and plastic waste reduction are sorely needed. Recently, multiple enzymes capable of degrading PET (polyethylene terephthalate) plastic have been identified and engineered. In particular, the enzymes PETase and MHETase from Ideonella sakaiensis depolymerize PET into the two building blocks used for its synthesis, ethylene glycol (EG) and terephthalic acid (TPA). Importantly, EG and TPA can be re-used for PET synthesis allowing complete and sustainable PET recycling. RESULTS: In this study we used Saccharomyces cerevisiae, a species utilized widely in bioindustrial fermentation processes, as a platform to develop a whole-cell catalyst expressing the MHETase enzyme, which converts monohydroxyethyl terephthalate (MHET) into TPA and EG. We assessed six expression architectures and identified those resulting in efficient MHETase expression on the yeast cell surface. We show that the MHETase whole-cell catalyst has activity comparable to recombinant MHETase purified from Escherichia coli. Finally, we demonstrate that surface displayed MHETase is active across a range of pHs, temperatures, and for at least 12 days at room temperature. CONCLUSIONS: We demonstrate the feasibility of using S. cerevisiae as a platform for the expression and surface display of PET degrading enzymes and predict that the whole-cell catalyst will be a viable alternative to protein purification-based approaches for plastic degradation.


Assuntos
Hidrolases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Hidrolases/metabolismo , Etilenoglicol , Plásticos/metabolismo
5.
Commun Biol ; 5(1): 865, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002479

RESUMO

Nematode parasites of humans, livestock and crops dramatically impact human health and welfare. Alarmingly, parasitic nematodes of animals have rapidly evolved resistance to anthelmintic drugs, and traditional nematicides that protect crops are facing increasing restrictions because of poor phylogenetic selectivity. Here, we exploit multiple motor outputs of the model nematode C. elegans towards nematicide discovery. This work yielded multiple compounds that selectively kill and/or immobilize diverse nematode parasites. We focus on one compound that induces violent convulsions and paralysis that we call nementin. We find that nementin stimulates neuronal dense core vesicle release, which in turn enhances cholinergic signaling. Consequently, nementin synergistically enhances the potency of widely-used non-selective acetylcholinesterase (AChE) inhibitors, but in a nematode-selective manner. Nementin therefore has the potential to reduce the environmental impact of toxic AChE inhibitors that are used to control nematode infections and infestations.


Assuntos
Caenorhabditis elegans , Nematoides , Acetilcolinesterase , Animais , Antinematódeos/farmacologia , Humanos , Neurotransmissores , Filogenia
7.
PLoS Negl Trop Dis ; 11(4): e0005502, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28379972

RESUMO

Parasitic nematodes negatively impact human and animal health worldwide. The market withdrawal of nematicidal agents due to unfavourable toxicities has limited the available treatment options. In principle, co-administering nematicides at lower doses along with molecules that potentiate their activity could mitigate adverse toxicities without compromising efficacy. Here, we screened for new small molecules that interact with aldicarb, which is a highly effective treatment for plant-parasitic nematodes whose toxicity hampers its utility. From our collection of 638 worm-bioactive compounds, we identified 20 molecules that interact positively with aldicarb to either kill or arrest the growth of the model nematode Caenorhabditis elegans. We investigated the mechanism of interaction between aldicarb and one of these novel nematicides called wact-86. We found that the carboxylesterase enzyme GES-1 hydrolyzes wact-86, and that the interaction is manifested by aldicarb's inhibition of wact-86's metabolism by GES-1. This work demonstrates the utility of C. elegans as a platform to search for new molecules that can positively interact with industrial nematicides, and provides proof-of-concept for prospective discovery efforts.


Assuntos
Aldicarb/farmacologia , Antinematódeos/farmacologia , Benzamidas/farmacologia , Benzofuranos/farmacologia , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos dos fármacos , Hidrolases de Éster Carboxílico/genética , Nematoides/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antinematódeos/química , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Mutação , Alinhamento de Sequência
8.
Nat Commun ; 6: 7485, 2015 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108372

RESUMO

Parasitic nematodes infect one quarter of the world's population and impact all humans through widespread infection of crops and livestock. Resistance to current anthelmintics has prompted the search for new drugs. Traditional screens that rely on parasitic worms are costly and labour intensive and target-based approaches have failed to yield novel anthelmintics. Here, we present our screen of 67,012 compounds to identify those that kill the non-parasitic nematode Caenorhabditis elegans. We then rescreen our hits in two parasitic nematode species and two vertebrate models (HEK293 cells and zebrafish), and identify 30 structurally distinct anthelmintic lead molecules. Genetic screens of 19 million C. elegans mutants reveal those nematicides for which the generation of resistance is and is not likely. We identify the target of one lead with nematode specificity and nanomolar potency as complex II of the electron transport chain. This work establishes C. elegans as an effective and cost-efficient model system for anthelmintic discovery.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Resistência a Medicamentos/genética , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Filogenia , Conformação Proteica , Especificidade da Espécie , Relação Estrutura-Atividade , Peixe-Zebra
9.
Neuropharmacology ; 63(4): 667-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22652059

RESUMO

The metabotropic glutamate receptors (mGluRs) are evolutionarily conserved from nematodes to vertebrates. The Caenorhabditis elegans (C. elegans) genome contains three mGluR genes referred to as mgl-1, mgl-2, and mgl-3. The aim of this study was to characterize the pharmacological profiles of orthosteric and allosteric mGluR ligands on mgl-2. A phylogenetic analysis revealed that mgl-2 is closely associated with the mammalian Group 1 mGluRs (mGluR1 and mGluR5) and is distinct from Group 2 and 3 mGluRs. The ligand binding domain of mgl-2 displayed higher homology to the rat Group 1 mGluRs binding domains compared to the level of homology in the heptahelical transmembrane domain regions. We found that, when transiently expressed in human embryonic kidney 293 cells, mgl-2 can be activated by glutamate and couples to human G-proteins to induce the release of intracellular calcium. Dose-response analyses revealed that mgl-2 has approximately a 15-20-fold lower affinity for glutamate and quisqualate compared to rat mGluR5. In contrast to orthosteric agonists, Group 1 negative allosteric modulators that target the transmembrane domain were ineffective at mgl-2. Surprisingly, CDPPB, an mGluR5 positive allosteric modulator, potentiated glutamate mediated activation of mgl-2, although MPEP and fenobam, two mGluR5 antagonists that share similar binding residues with CDPPB were ineffective at mgl-2. These findings indicate that selective pressures on mGluR protein structures have resulted in conservation of the glutamate binding site, whereas the allosteric modulator sites have been subjected to greater divergent evolutionary changes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Agonistas de Aminoácidos Excitatórios/metabolismo , Antagonistas de Aminoácidos Excitatórios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Benzamidas/metabolismo , Sítios de Ligação , Proteínas de Caenorhabditis elegans/agonistas , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Sinalização do Cálcio/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Cinética , Ligantes , Filogenia , Estrutura Terciária de Proteína , Pirazóis/metabolismo , Ácido Quisquálico/metabolismo , Ácido Quisquálico/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/genética , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
10.
Chem Biol ; 18(10): 1273-83, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035796

RESUMO

Preselection of compounds that are more likely to induce a phenotype can increase the efficiency and reduce the costs for model organism screening. To identify such molecules, we screened ~81,000 compounds in Saccharomyces cerevisiae and identified ~7500 that inhibit cell growth. Screening these growth-inhibitory molecules across a diverse panel of model organisms resulted in an increased phenotypic hit-rate. These data were used to build a model to predict compounds that inhibit yeast growth. Empirical and in silico application of the model enriched the discovery of bioactive compounds in diverse model organisms. To demonstrate the potential of these molecules as lead chemical probes, we used chemogenomic profiling in yeast and identified specific inhibitors of lanosterol synthase and of stearoyl-CoA 9-desaturase. As community resources, the ~7500 growth-inhibitory molecules have been made commercially available and the computational model and filter used are provided.


Assuntos
Inibidores Enzimáticos/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Teorema de Bayes , Benzofuranos/química , Benzofuranos/metabolismo , Benzofuranos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Simulação por Computador , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/metabolismo , Células HeLa , Humanos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/metabolismo , Modelos Biológicos , Fenótipo , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Saccharomyces cerevisiae/química , Estearoil-CoA Dessaturase
11.
Nat Chem Biol ; 6(7): 549-57, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20512140

RESUMO

The resistance of Caenorhabditis elegans to pharmacological perturbation limits its use as a screening tool for novel small bioactive molecules. One strategy to improve the hit rate of small-molecule screens is to preselect molecules that have an increased likelihood of reaching their target in the worm. To learn which structures evade the worm's defenses, we performed the first survey of the accumulation and metabolism of over 1,000 commercially available drug-like small molecules in the worm. We discovered that fewer than 10% of these molecules accumulate to concentrations greater than 50% of that present in the worm's environment. Using our dataset, we developed a structure-based accumulation model that identifies compounds with an increased likelihood of bioavailability and bioactivity, and we describe structural features that facilitate small-molecule accumulation in the worm. Preselecting molecules that are more likely to reach a target by first applying our model to the tens of millions of commercially available compounds will undoubtedly increase the success of future small-molecule screens with C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Modelos Biológicos , Estrutura Molecular , Preparações Farmacêuticas/química , Relação Estrutura-Atividade
12.
Nat Protoc ; 1(4): 1906-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17487175

RESUMO

This protocol describes a procedure for screening small molecules for bioactivity and a genetic approach to target identification using the nematode Caenorhabditis elegans as a model system. Libraries of small molecules are screened in 24-well plates that contain a solid agar substrate. On top of the agar mixture, one small-molecule species is deposited into each well, along with worm food (E. coli), and two third-stage or fourth-stage larval worms using a COPAS (Complex Object Parametric Analyzer and Sorter) Biosort. Three to five days later the plates are screened for phenotype. Images of the wells are acquired and archived using a HiDI 2100 automated imaging system (Elegenics). Up to 2,400 chemicals can be screened per week. To identify the predicted protein target of a bioactive molecule, wild-type worms are mutagenized using ethylmethanesulfonate (EMS). Progeny are screened for individuals resistant to the molecules effects. The candidate mutant target that confers resistance is then identified. Target identification might take months.


Assuntos
Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética
13.
Curr Treat Options Oncol ; 4(4): 309-17, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12943611

RESUMO

Insulinomas are the most common islet cell tumors and are located almost exclusively in the pancreas. Most of these tumors are sporadic, but they may also be associated with the multiple endocrine neoplasia type I syndrome. More than 90% of insulinomas are benign. Preoperative radiographic localization may prove difficult. Intraoperative palpation and ultrasound remain the gold standard for detection and appropriately planned resection. Although many options are available to treat the patient with malignant and metastatic disease, the mainstay of treatment remains surgery. Laparoscopic ultrasound and enucleation/resection may be increasingly used in the management of patients with insulinoma.


Assuntos
Insulinoma/terapia , Humanos , Insulinoma/tratamento farmacológico , Insulinoma/radioterapia , Insulinoma/cirurgia
14.
Mol Biol Cell ; 13(3): 1001-14, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11907278

RESUMO

The actomyosin purse string is an evolutionarily conserved contractile structure that is involved in cytokinesis, morphogenesis, and wound healing. Recent studies suggested that an actomyosin purse string is crucial for the closure of wounds in single cells. In the present study, morphological and pharmacological methods were used to investigate the role of this structure in the closure of wounds in the peripheral cytoplasm of sea urchin coelomocytes. These discoidal shaped cells underwent a dramatic form of actin-based centripetal/retrograde flow and occasionally opened and closed spontaneous wounds in their lamellipodia. Fluorescent phalloidin staining indicated that a well defined fringe of actin filaments assembles from the margin of these holes, and drug studies with cytochalasin D and latrunculin A indicated that actin polymerization is required for wound closure. Additional evidence that actin polymerization is involved in wound closure was provided by the localization of components of the Arp2/3 complex to the wound margin. Significantly, myosin II immunolocalization demonstrated that it is not associated with wound margins despite being present in the perinuclear region. Pharmacological evidence for the lack of myosin II involvement in wound closure comes from experiments in which a microneedle was used to produce wounds in cells in which actomyosin contraction was inhibited by treatment with kinase inhibitors. Wounds produced in kinase inhibitor-treated cells closed in a manner similar to that seen with control cells. Taken together, our results suggest that an actomyosin purse string mechanism is not responsible for the closure of lamellar wounds in coelomocytes. We hypothesize that the wounds heal by means of a combination of the force produced by actin polymerization alone and centripetal flow. Interestingly, these cells did assemble an actomyosin structure around the margin of phagosome-like membrane invaginations, indicating that myosin is not simply excluded from the periphery by some general mechanism. The results indicate that the actomyosin purse string is not the only mechanism that can mediate wound closure in single cells.


Assuntos
Actinas/metabolismo , Pseudópodes/metabolismo , Ouriços-do-Mar/ultraestrutura , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Membrana Celular/metabolismo , Citocalasina D/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Microscopia de Vídeo , Miosina Tipo II/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Faloidina/metabolismo , Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/metabolismo , Estaurosporina/farmacologia , Tiazóis/farmacologia , Tiazolidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA