Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 7(12): e2022GH000716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38155731

RESUMO

The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.

2.
Environ Toxicol Chem ; 41(12): 3116-3124, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36148933

RESUMO

Organic ultraviolet (UV) filters are used in a variety of cosmetic and personal care products (CPCPs), including sunscreens, due to their ability to absorb solar radiation. These UV filters can be washed down the drain through bathing, cleansing, or the laundering of clothing, therefore UV filters can enter the freshwater environment via wastewater treatment plant effluent, and so a freshwater risk assessment is necessary to establish the environmentally safe use of these important CPCP ingredients. In the present study, an environmental safety assessment for a UV filter of regulatory concern, octinoxate, was conducted. An established risk assessment framework designed specifically for CPCPs released to the freshwater environment in the United States was used for the assessment. A distribution of predicted environmental concentrations (PECs) representative of conditions across the region was calculated using the spatially resolved probabilistic exposure model iSTREEM. A review of available hazard data was conducted to derive a predicted no-effect concentration (PNEC). The safety assessment was conducted by comparing the PEC distribution to the PNEC. A substantial margin of safety was found between the 90th percentile PEC, which is representative of the reasonable worst-case environmental exposure, and the PNEC. Owing to this finding of negligible risk, further refinement of the risk assessment through the generation of experimental data or refinement of conservative assumptions is not prioritized. These results are critical for demonstrating the environmental safety of UV filters in the US freshwater environment and will help guide future work. Environ Toxicol Chem 2022;41:3116-3124. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Cosméticos , Poluentes Químicos da Água , Estados Unidos , Água Doce , Cinamatos , Protetores Solares , Medição de Risco , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 40(12): 3441-3464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34758162

RESUMO

There is growing interest in the environmental safety of ultraviolet (UV) filters found in cosmetic and personal care products (CPCPs). The CPCP industry is assessing appropriate environmental risk assessment (ERA) methods to conduct robust environmental safety assessments for these ingredients. Relevant and reliable data are needed for ERA, particularly when the assessment is supporting regulatory decision-making. In the present study, we apply a data evaluation approach to incorporate nonstandard toxicity data into the ERA process through an expanded range of reliability scores over commonly used approaches (e.g., Klimisch scores). The method employs an upfront screening followed by a data quality assessment based largely on the Criteria for Reporting and Evaluating Ecotoxicity Data (CRED) approach. The method was applied in a coral case study in which UV filter toxicity data was evaluated to identify data points potentially suitable for higher tier and/or regulatory ERA. This is an optimal case study because there are no standard coral toxicity test methods, and UV filter bans are being enacted based on findings reported in the current peer-reviewed data set. Eight studies comprising nine assays were identified; four of the assays did not pass the initial screening assessment. None of the remaining five assays received a high enough reliability score (Rn ) to be considered of decision-making quality (i.e., R1 or R2). Four assays were suitable for a preliminary ERA (i.e., R3 or R4), and one assay was not reliable (i.e., R6). These results highlight a need for higher quality coral toxicity studies, potentially through the development of standard test protocols, to generate reliable toxicity endpoints. These data can then be used for ERA to inform environmental protection and sustainability decision-making. Environ Toxicol Chem 2021;40:3441-3464. © 2021 Personal Care Products Council. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Antozoários , Ecotoxicologia , Animais , Reprodutibilidade dos Testes , Medição de Risco/métodos , Testes de Toxicidade
4.
Integr Environ Assess Manag ; 17(5): 951-960, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913597

RESUMO

Organic ultraviolet (UV) filters are used in cosmetic and personal care products (CPCPs) and over-the-counter (OTC) sunscreens, due to their ability to absorb solar radiation. When OTC and CPCP ingredients are washed down the drain, they can then enter freshwaters that receive wastewater treatment plant effluents. This paper presents a freshwater environmental safety assessment of a key UV filter, oxybenzone, used in OTC sunscreens and CPCPs in the United States. Exposure was characterized using iSTREEM® , a spatially resolved aquatic exposure model developed for chemicals disposed of down the drain. iSTREEM® provides a comprehensive exposure assessment of oxybenzone concentrations in United States receiving waters through predicted environmental concentration (PEC) distributions representative of conditions across the region. A review of available hazard data was used to derive a predicted no-effect concentration (PNEC) using aquatic toxicity data and assessment factors. A safety assessment was conducted by comparing the PEC distribution with the PNEC. The results indicate that oxybenzone is of low concern and there is a significant margin of safety as the 90th percentile PEC is two orders of magnitude below the PNEC. These results are instrumental in demonstrating the environmental safety of key organic UV filters in the U.S. freshwater environment and will help prioritize future work. Integr Environ Assess Manag 2021;17:951-960. © 2021 Personal Care Products Council. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Benzofenonas/toxicidade , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Environ Toxicol Chem ; 40(4): 967-988, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528837

RESUMO

There has been a rapid increase in public, political, and scientific interest regarding the impact of organic ultraviolet (UV) filters to coral reefs. Such filters are found in sunscreens and other consumer products and enter the aquatic environment via direct (i.e., recreational activities, effluents) or indirect (i.e., land runoff) pathways. This review summarizes the current state of the science regarding the concentration of organic UV filters in seawater and sediment near coral reef ecosystems and in coral tissues, toxicological data from early and adult life stages of coral species, and preliminary environmental risk characterizations. Up to 14 different organic UV filters in seawater near coral reefs have been reported across 12 studies, with the majority of concentrations in the nanograms per liter range. Nine papers report toxicological findings from no response to a variety of biological effects occurring in the micrograms per liter to milligrams per liter range, in part given the wide variations in experimental design and coral species and/or life stage used. This review presents key findings; scientific data gaps; flaws in assumptions, practice, and inference; and a number of recommendations for future studies to assess the environmental risk of organic UV filters to coral reef ecosystems. Environ Toxicol Chem 2021;40:967-988. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Antozoários , Animais , Recifes de Corais , Ecossistema , Água do Mar , Protetores Solares/toxicidade
6.
Environ Sci Technol ; 52(21): 12494-12503, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30303372

RESUMO

Environmental risk assessment of pharmaceuticals requires the determination of their environmental exposure concentrations. Existing exposure modeling approaches are often computationally demanding, require extensive data collection and processing efforts, have a limited spatial resolution, and have undergone limited evaluation against monitoring data. Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit model calculating concentrations of active pharmaceutical ingredients (APIs) in surface waters across Europe at ∼1 km resolution. ePiE strikes a balance between generating data on exposure at high spatial resolution while having limited computational and data requirements. Comparison of model predictions with measured concentrations of a diverse set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around 95% were within an order of magnitude. Improved predictions were obtained for the river Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption data were available and the monitoring study design was coherent with the model outputs. Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin, gabapentin, and acetaminophen as priority when based on predicted exposure concentrations. After incorporation of toxic potency, this changed to desvenlafaxine, loratadine, and hydrocodone.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Exposição Ambiental , Monitoramento Ambiental , Europa (Continente) , Rios
7.
Environ Toxicol Chem ; 37(11): 2776-2796, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30328173

RESUMO

There is increasing scientific and public concern over the presence of microplastics in the natural environment. We present the results of a systematic review of the literature to assess the weight of evidence for microplastics causing environmental harm. We conclude that microplastics do occur in surface water and sediments. Fragments and fibers predominate, with beads making up only a small proportion of the detected microplastic types. Concentrations detected are orders of magnitude lower than those reported to affect endpoints such as biochemistry, feeding, reproduction, growth, tissue inflammation and mortality in organisms. The evidence for microplastics acting as a vector for hydrophobic organic compounds to accumulate in organisms is also weak. The available data therefore suggest that these materials are not causing harm to the environment. There is, however, a mismatch between the particle types, size ranges, and concentrations of microplastics used in laboratory tests and those measured in the environment. Select environmental compartments have also received limited attention. There is an urgent need for studies that address this mismatch by performing high quality and more holistic monitoring studies alongside more environmentally realistic effects studies. Only then will we be able to fully characterize risks of microplastics to the environment to support the introduction of regulatory controls that can make a real positive difference to environmental quality. Environ Toxicol Chem 2018;37:2776-2796. © 2018 SETAC.


Assuntos
Monitoramento Ambiental , Conhecimento , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/análise , Purificação da Água
8.
Artigo em Inglês | MEDLINE | ID: mdl-29714645

RESUMO

Pharmaceuticals are ubiquitous in the natural environment with concentrations expected to rise as human population increases. Environmental risk assessments are available for a small portion of pharmaceuticals in use, raising concerns over the potential risks posed by other drugs that have little or no data. With >1900 active pharmaceutical ingredients in use, it would be a major task to test all of the compounds with little or no data. Desk-based prioritization studies provide a potential solution by identifying those substances that are likely to pose the greatest risk to the environment and which, therefore, need to be considered a priority for further study. The aim of this review was to (1) provide an overview of different prioritization exercises performed for pharmaceuticals in the environment and the results obtained; and (2) propose a new holistic risk-based prioritization framework for drugs in the environment. The suggested models to underpin this framework are discussed in terms of validity and applicability. The availability of data required to run the models was assessed and data gaps identified. The implementation of this framework may harmonize pharmaceutical prioritization efforts and ensure that, in the future, experimental resources are focused on molecules, endpoints, and environmental compartments that are biologically relevant.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Medição de Risco/métodos , Humanos , Modelos Teóricos
9.
Water Res ; 137: 72-85, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544205

RESUMO

Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.


Assuntos
Preparações Farmacêuticas/análise , Rios/química , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Cidades , Monitoramento Ambiental , Modelos Teóricos , Estações do Ano , Análise Espaço-Temporal , Espectrometria de Massas em Tandem , Reino Unido , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Águas Residuárias/química
10.
Environ Toxicol Chem ; 36(10): 2823-2832, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28477358

RESUMO

Prioritization methodologies are often used for identifying those pharmaceuticals that pose the greatest risk to the natural environment and to focus laboratory testing or environmental monitoring toward pharmaceuticals of greatest concern. Risk-based prioritization approaches, employing models to derive exposure concentrations, are commonly used, but the reliability of these models is unclear. The present study evaluated the accuracy of exposure models commonly used for pharmaceutical prioritization. Targeted monitoring was conducted for 95 pharmaceuticals in the Rivers Foss and Ouse in the City of York (UK). Predicted environmental concentration (PEC) ranges were estimated based on localized prescription, hydrological data, reported metabolism, and wastewater treatment plant (WWTP) removal rates, and were compared with measured environmental concentrations (MECs). For the River Foss, PECs, obtained using highest metabolism and lowest WWTP removal, were similar to MECs. In contrast, this trend was not observed for the River Ouse, possibly because of pharmaceutical inputs unaccounted for by our modeling. Pharmaceuticals were ranked by risk based on either MECs or PECs. With 2 exceptions (dextromethorphan and diphenhydramine), risk ranking based on both MECs and PECs produced similar results in the River Foss. Overall, these findings indicate that PECs may well be appropriate for prioritization of pharmaceuticals in the environment when robust and local data on the system of interest are available and reflective of most source inputs. Environ Toxicol Chem 2017;36:2823-2832. © 2017 SETAC.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas/análise , Rios/química , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Modelos Teóricos , Preparações Farmacêuticas/química , Medição de Risco , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
11.
Environ Sci Pollut Res Int ; 22(13): 9816-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25639245

RESUMO

Phosphorus (P) is the main reason many surficial water bodies in the UK are currently failing to meet the chemical standards set by the Water Framework Directive (WFD). This work focuses on the role of sediments in the upper reaches of the River Taw in the South West of the UK. Point and diffuse sources of P have been identified as well as a number of mitigation measures applied or planned to address the issues. However, it is unknown what effect these sources have had on the river's sediments and how they will react to diminishing inputs of P into the water column in the future. The diffusive gradient in thin-films (DGT) method is utilised in situ to quantify and identify labile, potentially bioavailable P fluxes and potential storage mechanisms at sites of known diffuse and point P inputs. In the vicinity of a heavily contaminated point source, data present here shows that sediments are still acting as a sink. The proposed mechanism for this is the formation of a 'calcium cap' which provides a geochemical barrier between the sediment and overlying water to prevent loss of labile P. The strong correlation between calcium and total P under most circumstances supports this hypothesis. This conclusion provides some confidence that even though P concentrations in some sediments are significantly elevated, mobility between the sediment and overlying water is restricted. In the context of routine monitoring against WFD targets, the molybdenum blue method generally employed to determine soluble reactive phosphorus was shown to not be equivalent to the DGT labile P pool, especially at pristine or moderately point/diffuse influenced sites. This is likely due to desorption of weakly bound P from colloids, which is unavailable to DGT devices. These results have the potential to be scaled up to the full catchment or other catchments which exhibit similar physical and chemical sediment composition and provide a stronger foundation for management and target setting than current monitoring approaches.


Assuntos
Fósforo/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Difusão , Sedimentos Geológicos/química , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA