Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mammary Gland Biol Neoplasia ; 22(2): 141-157, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28455726

RESUMO

Claudins are a large family of membrane proteins whose classic function is to regulate the permeability of tight junctions in epithelia. They are tetraspanins, with four alpha-helices crossing the membrane, two extracellular loops, a short cytoplasmic N-terminus and a longer and more variable C-terminus. The extracellular ends of the helices are known to undergo side-to-side (cis) interactions that allow the formation of claudin polymers in the plane of the membrane. The extracellular loops also engage in head-to-head (trans) interactions thought to mediate the formation of tight junctions. However, claudins are also present in intracellular structures, thought to be vesicles, with less well-characterized functions. Here, we briefly review our current understanding of claudin structure and function followed by an examination of changes in claudin mRNA and protein expression and localization through mammary gland development. Claudins-1, 3, 4, 7, and 8 are the five most prominent members of the claudin family in the mouse mammary gland, with varied abundance and intracellular localization during the different stages of post-pubertal development. Claudin-1 is clearly localized to tight junctions in mammary ducts in non-pregnant non-lactating animals. Cytoplasmic puncta that stain for claudin-7 are present throughout development. During pregnancy claudin-3 is localized both to the tight junction and basolaterally while claudin-4 is found only in sparse puncta. In the lactating mouse both claudin-3 and claudin-8 are localized at the tight junction where they may be important in forming the paracellular barrier. At involution and under challenge by lipopolysaccharide claudins -1, -3, and -4 are significantly upregulated. Claudin-3 is still colocalized with tight junction molecules but is also distributed through the cytoplasm as is claudin-4. These largely descriptive data provide the essential framework for future mechanistic studies of the function and regulation of mammary epithelial cell claudins.


Assuntos
Claudinas/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Junções Íntimas/metabolismo , Animais , Células Epiteliais/citologia , Feminino , Lactação , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
2.
Cult Health Sex ; 19(4): 453-469, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27737624

RESUMO

Participation in extreme rituals (e.g., fire-walking, body-piercing) has been documented throughout history. Motivations for such physically intense activities include religious devotion, sensation-seeking and social bonding. The present study aims to explore an extreme ritual within the context of bondage/discipline, dominance/submission and sadism/masochism (BDSM): the 'Dance of Souls', a 160-person ritual involving temporary piercings with weights or hooks attached and dancing to music provided by drummers. Through hormonal assays, behavioural observations and questionnaires administered before, during and after the Dance, we examine the physiological and psychological effects of the Dance, and the themes of spirituality, connectedness, transformation, release and community reported by dancers. From before to during the Dance, participants showed increases in physiological stress (measured by the hormone cortisol), self-reported sexual arousal, self-other overlap and decreases in psychological stress and negative affect. Results suggest that this group of BDSM practitioners engage in the Dance for a variety of reasons, including experiencing spirituality, deepening interpersonal connections, reducing stress and achieving altered states of consciousness.


Assuntos
Comportamento Ritualístico , Dança/psicologia , Masoquismo/psicologia , Sadismo/psicologia , Feminino , Humanos , Hidrocortisona/análise , Masculino , Pessoa de Meia-Idade , Motivação , Comportamento Sexual/psicologia , Espiritualidade , Estresse Psicológico/psicologia , Inquéritos e Questionários
3.
Am J Physiol Endocrinol Metab ; 299(6): E918-27, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20739508

RESUMO

The lactating mammary gland synthesizes large amounts of triglyceride from fatty acids derived from the blood and from de novo lipogenesis. The latter is significantly increased at parturition and decreased when additional dietary fatty acids become available. To begin to understand the molecular regulation of de novo lipogenesis, we tested the hypothesis that the transcription factor sterol regulatory element binding factor (SREBF)-1c is a primary regulator of this system. Expression of Srebf1c mRNA and six of its known target genes increased ≥2.5-fold at parturition. However, Srebf1c-null mice showed only minor deficiencies in lipid synthesis during lactation, possibly due to compensation by Srebf1a expression. To abrogate the function of both isoforms of Srebf1, we bred mice to obtain a mammary epithelial cell-specific deletion of SREBF cleavage-activating protein (SCAP), the SREBF escort protein. These dams showed a significant lactation deficiency, and expression of mRNA for fatty acid synthase (Fasn), insulin-induced gene 1 (Insig1), mitochondrial citrate transporter (Slc25a1), and stearoyl-CoA desaturase 2 (Scd2) was reduced threefold or more; however, the mRNA levels of acetyl-CoA carboxylase-1α (Acaca) and ATP citrate lyase (Acly) were unchanged. Furthermore, a 46% fat diet significantly decreased de novo fatty acid synthesis and reduced the protein levels of ACACA, ACLY, and FASN significantly, with no change in their mRNA levels. These data lead us to conclude that two modes of regulation exist to control fatty acid synthesis in the mammary gland of the lactating mouse: the well-known SREBF1 system and a novel mechanism that acts at the posttranscriptional level in the presence of SCAP deletion and high-fat feeding to alter enzyme protein.


Assuntos
Gorduras na Dieta/metabolismo , Ácidos Graxos/biossíntese , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Western Blotting , Ácidos Graxos/análise , Feminino , Expressão Gênica , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipogênese/genética , Glândulas Mamárias Animais/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Leite/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
4.
BMC Dev Biol ; 10: 4, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20074369

RESUMO

BACKGROUND: The Six1 homeobox gene is highly expressed in the embryonic mammary gland, continues to be expressed in early postnatal mammary development, but is lost when the mammary gland differentiates during pregnancy. However, Six1 is re-expressed in breast cancers, suggesting that its re-instatement in the adult mammary gland may contribute to breast tumorigenesis via initiating a developmental process out of context. Indeed, recent studies demonstrate that Six1 overexpression in the adult mouse mammary gland is sufficient for initiating invasive carcinomas, and that its overexpression in xenograft models of mammary cancer leads to metastasis. These data demonstrate that Six1 is causally involved in both breast tumorigenesis and metastasis, thus raising the possibility that it may be a viable therapeutic target. However, because Six1 is highly expressed in the developing mammary gland, and because it has been implicated in the expansion of mammary stem cells, targeting Six1 as an anti-cancer therapy may have unwanted side effects in the breast. RESULTS: We sought to determine the role of Six1 in mammary development using two independent mouse models. To study the effect of Six1 loss in early mammary development when Six1 is normally expressed, Six1-/- embryonic mammary glands were transplanted into Rag1-/- mice. In addition, to determine whether Six1 downregulation is required during later stages of development to allow for proper differentiation, we overexpressed Six1 during adulthood using an inducible, mammary-specific transgenic mouse model. Morphogenesis of the mammary gland occurred normally in animals transplanted with Six1-/- embryonic mammary glands, likely through the redundant functions of other Six family members such as Six2 and Six4, whose expression was increased in response to Six1 loss. Surprisingly, inappropriate expression of Six1 in the adult mammary gland, when levels are normally low to absent, did not inhibit normal mammary differentiation during pregnancy or lactation. CONCLUSIONS: Six1 is not critical for normal mammary gland development, since neither loss nor inappropriate overexpression of Six1 adversely affects normal mammary gland development or function. However, as both Six2 and Six4 levels are increased in Six1-/- mammary glands, we postulate that these Six family members are functionally redundant in the gland, as is true of many homeobox gene families. This data, in conjunction with recent findings that Six1 is capable of promoting breast cancer initiation and progression, suggest that Six1 may serve as a reasonable chemotherapeutic target in a clinical setting, particularly for those women diagnosed with breast cancer in their childbearing years.


Assuntos
Proteínas de Homeodomínio/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Animais , Neoplasias da Mama/metabolismo , Feminino , Humanos , Lactação/metabolismo , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA