Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol (Mosk) ; 57(6): 938-948, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062951

RESUMO

Cancer cells are characterized by an increased level of metabolism and are highly dependent on the correct functioning of the processes that ensure homeostasis. Reactive sulfur species (RSS) are important molecular modulators of metabolic processes in both healthy and tumor cells. The effect of RSS and, in particular, H2S, on key cellular systems, including the ubiquitin-proteasome system (UPS), which provides the destruction of most intracellular proteins, has been shown. The main components of the UPS are proteasomes, multisubunit protein complexes, within which proteolysis occurs. At the same time, data on the effect of H2S directly on the pool of proteasomes in tumor cells are insufficient. Here, we studied the effect of incubation of SW620B8-mCherry colorectal adenocarcinoma cells expressing a fluorescently labeled proteasome subunit with 50, 100, and 200 µM of the hydrogen sulfide donor GYY4137. The effect of the substance on the proteasome pool was assessed 6, 24, 48, and 72 h after administration. It was shown that the chymotrypsin-like and caspase-like proteasome activity decreases in cells incubated with 200 µM of the GYY4137 for 24 h. This coincided with an increase in the expression of proteasome subunit genes. In lysates of cells incubated with 200 µM GYY4137 for 48 h an increase in the content of the constitutive ß5 subunit was observed and the activity of proteasomes leveled off. Following prolonged incubation with GYY4137 (72h), an increase in the expression levels of some proteasome genes was also observed, although this did not have a significant effect on the activity and subunit composition of proteasomes. Thus, the obtained data indicate the modulation of proteasome activity by the hydrogen sulfide donor and the effect of GYY4137 on transcription and translation of proteasome genes.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Morfolinas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
2.
Mol Biol (Mosk) ; 57(5): 873-885, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752652

RESUMO

The ubiquitin-proteasome system (UPS) provides hydrolysis of most intracellular proteins in proteasomes. There are various forms of proteasomes that differ, among other things, in the set of proteolytic subunits and the presence of activators. Alzheimer's disease (AD) is characterized by disturbances in the functional state of the UPS. At the same time, an increase in the expression of certain forms of proteasomes, in particular, proteasomes containing immune subunits (nonconstitutive proteasomes), has been shown. Here, we studied dynamic changes in the expression of catalytic proteasome subunit genes and corresponding proteins in the cerebral cortex of animals using a mouse model of AD (5xFAD transgenic mice). Increases by 4 and 6 folds in transcripts of the PSMB9 and PSMB8 genes encoding immune proteasome subunits were detected, as well as a significant increase in the content of immune ß-subunits (by 2.8 folds, ß1i; 2.2 folds, ß2i) in samples from 5xFAD mice at the age of 380 days, compared with samples from mice at 60 days of age. Moreover, the activation of both 20S and 26S proteasomes containing immune subunits were revealed in samples from 380 days old 5xFAD mice by electrophoresis in native conditions. This indicates activated synthesis of the immune subunits and assembly of nonconstitutive proteasomes at the terminal stage of pathology development. The obtained data, in combination with the available literature, indicate that the activation of nonconstitutive proteasomes is a universal phenomenon characteristic of various animal models of AD, which may reflect both the development of neuroinflammation and adaptive processes in tissues induced by the accumulation of toxic protein aggegates.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Animais , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas/metabolismo , Hidrólise , Córtex Cerebral/metabolismo
3.
Mol Biol (Mosk) ; 57(5): 886-894, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37752653

RESUMO

Proteasomes are key components of the ubiquitin-proteasome system. Various forms of proteasomes are known. During aging, disturbances in the functioning of proteasomes have been revealed, as well as increased expression of their particular forms. Considering these data, we studied the expression of genes encoding the constitutive and immune subunits of proteasomes in cerebral cortex samples from C57BL/6 mice at the ages of 60, 190, 380, and 720 days. In addition, the contents of constitutive and immune proteasome subunits, chymotrypsin-like and caspase-like activities of proteasome pools, as well as the activity of the ß5i immune subunit were studied in tissue homogenates. The chymotrypsin-like activity and the activity of the ß5i subunit of different forms of proteasomes separated by electrophoresis in native gel were characterized. Compared with samples from young animals, in the cerebral cortex of animals at an age of 720 days the following changes in the expression patterns of proteasome genes were revealed: a decreased expression of the PSMB5 gene encoding constitutive proteasome subunit ß5; increased expression of genes encoding immune proteasome subunits ß5i and ß1i. In tissue homogenates of aged mice, an increase in the content of immune subunits ß1i and ß2i was shown. In samples from old animals, chymotrypsin-like activity was decreased and a tendency to a decrease in caspase-like activity of proteasomes as well as the ß5i subunit activity was revealed. Analysis of the activity of native complexes in tissues obtained from old animals revealed decreased chymotrypsin-like activity of 26S and 20S proteasomes containing the ß5i subunit. Based on the obtained data, it can be assumed that changes in the pool of nonconstitutive proteasomes reflect aging-associated adaptive processes in the mouse brain.


Assuntos
Quimotripsina , Complexo de Endopeptidases do Proteassoma , Camundongos , Animais , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Quimotripsina/metabolismo , Camundongos Endogâmicos C57BL , Córtex Cerebral/metabolismo , Caspases/metabolismo , Envelhecimento/genética
4.
Mol Biol (Mosk) ; 55(1): 54-63, 2021.
Artigo em Russo | MEDLINE | ID: mdl-33566025

RESUMO

Proteasomes are multisubunit complexes that degrade most intracellular proteins. Three of the 14 subunits of the 20S proteasome, specifically ß1, ß2, and ß5, demonstrate catalytic activity and hydrolyze peptide bonds after acidic, basic, and hydrophobic amino acids, respectively. Within proteasome, the constitutive catalytic subunits ß1, ß2, and ß5 can be substituted by the immune ßli, ß2i, and ß5i subunits, respectively. However, proteasomes do not always contain all the immune subunits at once; some proteasomes contain both immune and constitutive catalytic subunits simultaneously. Incorporation of immune subunits modifies the pattern of peptides produced by proteasomes. This is essential for antigen presentation and cellular response to stress as well as for a number of intracellular signaling pathways. We have developed a quantitative PCR-based system for the determination of the absolute levels of murine constitutive and immune proteasome subunits gene expression. Using the obtained system, we have estimated the expression levels of genes encoding proteasome subunits in the mouse central nervous system (CNS) tissues. We have shown that the quantity of transcripts of proteasome catalytic subunits in different CNS structures differed significantly. These data allow us to assume that the studied brain regions can be divided into two groups, with relatively "high" (cerebral cortex and spinal cord) and "low" (hippocampus and cerebellum) levels of proteasome subunit genes expression. Moreover, it was possible to distinguish structures with similar and significantly different gene expression profiles of proteasome catalytic subunits. Thus, the gene expression profiles in the cortex, spinal cord, and cerebellum were similar, but different from the expression profile in the hippocampus. Based on the obtained data, we suggest that there are differences in the proteasome pool, as well as in the functional load on the ubiquitin-proteasome system in different parts of the CNS.


Assuntos
Apresentação de Antígeno , Complexo de Endopeptidases do Proteassoma , Animais , Citoplasma , Camundongos , Peptídeos , Complexo de Endopeptidases do Proteassoma/genética , Proteínas
5.
Mol Biol (Mosk) ; 53(4): 638-647, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31397437

RESUMO

The ubiquitin-proteasome system (UPS) performs proteolysis of most intracellular proteins. The key components of the UPS are the proteasomes, multi-subunit protein complexes, playing an important role in cellular adaptation to various types of stress. We analyzed the dynamics of the proteasome activity, the content of proteasome subunits, and the expression levels of genes encoding catalytic subunits of proteasomes in the human histiocytic lymphoma U937 cell line immediately, 2, 4, 6, 9, 24, and 48 h after a heat shock (HS). The initial decrease (up to 62%) in the proteasome activity in cellular lysates was revealed, then 10 h after HS the activity began to recover. The amount of proteasomal α-subunits in the cells decreased 2 h after HS, and was restored to 24-48 h after HS. Fluctuations in the levels of mRNAs encoding proteasome catalytic subunits with the maximum expression 2 h after HS and a gradual decrease to 48 h after HS were observed. The average estimated number of mRNA copies per cell ranged from 10 for weakly to 150 for highly expressed proteasome genes. Thus, the recovery efficiency of UPS functionality after HS, which reflects the important role of proteasomes in maintaining cell homeostasis, was evaluated.


Assuntos
Resposta ao Choque Térmico , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Subunidades Proteicas/genética , Proteólise , Células U937 , Ubiquitina/metabolismo
7.
Biofizika ; 35(1): 124-7, 1990.
Artigo em Russo | MEDLINE | ID: mdl-2346755

RESUMO

Results are presented of plotting a dimeric mathematical model of human internal ear cochlea with allowance for the dependence of the basilar membrane mass on the length of its region between the registered point and the labyrinth wall of the threshold window region. Investigations carried out on such a model by means of a computer permitted calculation of the location of the rounding curve maximum point of the displacement waves of the basilar membrane for the frequencies of 0.05-95 kHz included. An analysis of the rounding waves of the sonic and ultrasonic range showed that although above 20 kHz the curves maximum acquires slured contours, it is well enough pronounced up to 75 kHz. The results obtained suggest adequate effect of ultrasounds on the internal ear and analogy of mechanical reaction of human cochlea to sonic and ultrasonic stimulation.


Assuntos
Estimulação Acústica , Membrana Basilar/fisiologia , Cóclea/fisiologia , Modelos Teóricos , Ultrassom , Humanos , Matemática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA