Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Cancer Res Clin Oncol ; 148(1): 31-46, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705104

RESUMO

BACKGROUND: More than 90% of the adult population globally is chronically infected by the Epstein-Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. METHOD: We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. CONCLUSION: We estimated that EBV-related cases from these six cancers accounted for 239,700-357,900 new cases and 137,900-208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic.


Assuntos
Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/patogenicidade , Neoplasias/epidemiologia , Neoplasias/virologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bleomicina/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/virologia , Dacarbazina/uso terapêutico , Doxorrubicina/uso terapêutico , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/virologia , Humanos , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/virologia , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/virologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/virologia , Neoplasias/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/virologia , Vimblastina/uso terapêutico
3.
Sci Immunol ; 4(32)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770409

RESUMO

During αß T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αß T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αß T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αß T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.


Assuntos
Complexo CD3/metabolismo , Mapas de Interação de Proteínas/imunologia , Proteômica/métodos , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Timo/metabolismo , Animais , Complexo CD3/genética , Complexo CD3/imunologia , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pneumonia por Pneumocystis/imunologia , Transdução de Sinais/imunologia , Theilovirus/imunologia , Timócitos/imunologia
4.
Gene Ther ; 27(10-11): 525-534, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-32704085

RESUMO

Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promising potential for opening new avenues in regenerative medicine. However, since the tumorigenic potential of undifferentiated pluripotent stem cells (PSCs) is a major safety concern for clinical transplantation, inducible Caspase-9 (iC9) is under consideration for use as a fail-safe system. Here, we used targeted gene editing to introduce the iC9 system into human iPSCs, and then interrogated the efficiency of inducible apoptosis with normal iPSCs as well as diseased iPSCs derived from patients with acute myeloid leukemia (AML-iPSCs). The iC9 system induced quick and efficient apoptosis to iPSCs in vitro. More importantly, complete eradication of malignant cells without AML recurrence was shown in disease mouse models by using AML-iPSCs. In parallel, it shed light on several limitations of the iC9 system usage. Our results suggest that careful use of the iC9 system will serve as an important countermeasure against posttransplantation adverse events in stem cell transplantation therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Animais , Apoptose , Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/metabolismo
5.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429369

RESUMO

BACKGROUND: Increasing evidence indicates a role for EBV in the pathogenesis of multiple sclerosis (MS). EBV-infected autoreactive B cells might accumulate in the CNS because of defective cytotoxic CD8+ T cell immunity. We sought to determine the feasibility and safety of treating progressive MS patients with autologous EBV-specific T cell therapy. METHODS: An open-label phase I trial was designed to treat 5 patients with secondary progressive MS and 5 patients with primary progressive MS with 4 escalating doses of in vitro-expanded autologous EBV-specific T cells targeting EBV nuclear antigen 1, latent membrane protein 1 (LMP1), and LMP2A. Following adoptive immunotherapy, we monitored the patients for safety and clinical responses. RESULTS: Of the 13 recruited participants, 10 received the full course of T cell therapy. There were no serious adverse events. Seven patients showed improvement, with 6 experiencing both symptomatic and objective neurological improvement, together with a reduction in fatigue, improved quality of life, and, in 3 patients, reduced intrathecal IgG production. All 6 patients receiving T cells with strong EBV reactivity showed clinical improvement, whereas only 1 of the 4 patients receiving T cells with weak EBV reactivity showed improvement (P = 0.033, Fisher's exact test). CONCLUSION: EBV-specific adoptive T cell therapy was well tolerated. Clinical improvement following treatment was associated with the potency of EBV-specific reactivity of the administered T cells. Further clinical trials are warranted to determine the efficacy of EBV-specific T cell therapy in MS. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, ACTRN12615000422527. FUNDING: MS Queensland, MS Research Australia, Perpetual Trustee Company Ltd., and donations from private individuals who wish to remain anonymous.


Assuntos
Herpesvirus Humano 4/imunologia , Esclerose Múltipla/terapia , Linfócitos T/imunologia , Linfócitos T/transplante , Adulto , Idoso , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Feminino , Humanos , Imunoterapia Adotiva , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/virologia , Resultado do Tratamento , Proteínas da Matriz Viral/imunologia
6.
J Clin Invest ; 128(4): 1569-1580, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29528337

RESUMO

Polypeptide vaccines effectively activate human T cells but suffer from poor biological stability, which confines both transport logistics and in vivo therapeutic activity. Synthetic biology has the potential to address these limitations through the generation of highly stable antigenic "mimics" using subunits that do not exist in the natural world. We developed a platform based on D-amino acid combinatorial chemistry and used this platform to reverse engineer a fully artificial CD8+ T cell agonist that mirrored the immunogenicity profile of a native epitope blueprint from influenza virus. This nonnatural peptide was highly stable in human serum and gastric acid, reflecting an intrinsic resistance to physical and enzymatic degradation. In vitro, the synthetic agonist stimulated and expanded an archetypal repertoire of polyfunctional human influenza virus-specific CD8+ T cells. In vivo, specific responses were elicited in naive humanized mice by subcutaneous vaccination, conferring protection from subsequent lethal influenza challenge. Moreover, the synthetic agonist was immunogenic after oral administration. This proof-of-concept study highlights the power of synthetic biology to expand the horizons of vaccine design and therapeutic delivery.


Assuntos
Materiais Biomiméticos , Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Biblioteca de Peptídeos , Vacinação , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Humanos , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle
7.
Clin Transl Immunology ; 6(6): e147, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28748090

RESUMO

[This corrects the article DOI: 10.1038/cti.2016.87.].

8.
Clin Transl Immunology ; 6(1): e126, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28197337

RESUMO

Mounting evidence indicates that infection with Epstein-Barr virus (EBV) has a major role in the pathogenesis of multiple sclerosis (MS). Defective elimination of EBV-infected B cells by CD8+ T cells might cause MS by allowing EBV-infected autoreactive B cells to accumulate in the brain. Here we undertake a comprehensive analysis of the T-cell response to EBV in MS, using flow cytometry and intracellular IFN-γ staining to measure T-cell responses to EBV-infected autologous lymphoblastoid cell lines and pools of human leukocyte antigen (HLA)-class-I-restricted peptides from EBV lytic or latent proteins and cytomegalovirus (CMV), in 95 patients and 56 EBV-seropositive healthy subjects. In 20 HLA-A2+ healthy subjects and 20 HLA-A2+ patients we also analysed CD8+ T cells specific for individual peptides, measured by binding to HLA-peptide complexes and production of IFN-γ, TNF-α and IL-2. We found a decreased CD8+ T-cell response to EBV lytic, but not CMV lytic, antigens at the onset of MS and at all subsequent disease stages. CD8+ T cells directed against EBV latent antigens were increased but had reduced cytokine polyfunctionality indicating T-cell exhaustion. During attacks the EBV-specific CD4+ and CD8+ T-cell populations expanded, with increased functionality of latent-specific CD8+ T cells. With increasing disease duration, EBV-specific CD4+ and CD8+ T cells progressively declined, consistent with T-cell exhaustion. The anti-EBNA1 IgG titre correlated inversely with the EBV-specific CD8+ T-cell frequency. We postulate that defective CD8+ T-cell control of EBV reactivation leads to an expanded population of latently infected cells, including autoreactive B cells.

9.
Immunol Cell Biol ; 95(1): 68-76, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27670790

RESUMO

The CD8 co-receptor engages peptide-major histocompatibility complex class I (pMHCI) molecules at a largely invariant site distinct from the T-cell receptor (TCR)-binding platform and enhances the sensitivity of antigen-driven activation to promote effective CD8+ T-cell immunity. A small increase in the strength of the pMHCI/CD8 interaction (~1.5-fold) can disproportionately amplify this effect, boosting antigen sensitivity by up to two orders of magnitude. However, recognition specificity is lost altogether with more substantial increases in pMHCI/CD8 affinity (~10-fold). In this study, we used a panel of MHCI mutants with altered CD8-binding properties to show that TCR-mediated antigen specificity is delimited by a pMHCI/CD8 affinity threshold. Our findings suggest that CD8 can be engineered within certain biophysical parameters to enhance the therapeutic efficacy of adoptive T-cell transfer irrespective of antigen specificity.


Assuntos
Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Membrana Celular/metabolismo , Humanos , Ativação Linfocitária/imunologia , Mutação/genética , Peptídeos/metabolismo
10.
Sci Rep ; 6: 35332, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748447

RESUMO

CD8+ T-cells play a role in the pathogenesis of autoimmune diseases such as multiple sclerosis and type 1 diabetes. However, drugs that target the entire CD8+ T-cell population are not desirable because the associated lack of specificity can lead to unwanted consequences, most notably an enhanced susceptibility to infection. Here, we show that autoreactive CD8+ T-cells are highly dependent on CD8 for ligand-induced activation via the T-cell receptor (TCR). In contrast, pathogen-specific CD8+ T-cells are relatively CD8-independent. These generic differences relate to an intrinsic dichotomy that segregates self-derived and exogenous antigen-specific TCRs according to the monomeric interaction affinity with cognate peptide-major histocompatibility complex class I (pMHCI). As a consequence, "blocking" anti-CD8 antibodies can suppress autoreactive CD8+ T-cell activation in a relatively selective manner. These findings provide a rational basis for the development and in vivo assessment of novel therapeutic strategies that preferentially target disease-relevant autoimmune responses within the CD8+ T-cell compartment.


Assuntos
Anticorpos/imunologia , Linfócitos T CD8-Positivos/citologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Doenças Autoimunes/imunologia , Antígenos CD8/imunologia , Linhagem Celular , Epitopos/metabolismo , Humanos , Terapia de Imunossupressão , Ilhotas Pancreáticas/metabolismo , Ligantes , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Peptídeos/metabolismo
11.
J Immunol ; 197(3): 971-82, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27307560

RESUMO

The nonclassical HLA molecule MHC-related protein 1 (MR1) presents metabolites of the vitamin B synthesis pathways to mucosal-associated invariant T (MAIT) cells and other MR1-restricted T cells. This new class of Ags represents a variation on the classical paradigm of self/non-self discrimination because these T cells are activated through their TCR by small organic compounds generated during microbial vitamin B2 synthesis. Beyond the fundamental significance, the invariant nature of MR1 across the human population is a tantalizing feature for the potential development of universal immune therapeutic and diagnostic tools. However, many aspects of MR1 Ag presentation and MR1-restricted T cell biology remain unknown, and the ubiquitous expression of MR1 across tissues and cell lines can be a confounding factor for experimental purposes. In this study, we report the development of a novel CRISPR/Cas9 genome editing lentiviral system and its use to efficiently disrupt MR1 expression in A459, THP-1, and K562 cell lines. We generated isogenic MR1(-/-) clonal derivatives of the A549 lung carcinoma and THP-1 monocytic cell lines and used these to study T cell responses to intracellular pathogens. We confirmed that MAIT cell clones were unable to respond to MR1(-/-) clones infected with bacteria whereas Ag presentation by classical and other nonclassical HLAs was unaffected. This system represents a robust and efficient method to disrupt the expression of MR1 and should facilitate investigations into the processing and presentation of MR1 Ags as well as into the biology of MAIT cells.


Assuntos
Apresentação de Antígeno/imunologia , Edição de Genes/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Linfócitos T/imunologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Citometria de Fluxo , Vetores Genéticos , Humanos , Lentivirus , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Subpopulações de Linfócitos T/imunologia
12.
J Virol ; 90(16): 7497-507, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27279616

RESUMO

UNLABELLED: Reconstitution of T cell immunity is absolutely critical for the effective control of virus-associated infectious complications in hematopoietic stem cell transplant (HSCT) recipients. Coinfection with genetic variants of human cytomegalovirus (CMV) in transplant recipients has been linked to clinical disease manifestation; however, how these genetic variants impact T cell immune reconstitution remains poorly understood. In this study, we have evaluated dynamic changes in the emergence of genetic variants of CMV in HSCT recipients and correlated these changes with reconstitution of antiviral T cell responses. In an analysis of single nucleotide polymorphisms within sequences encoding HLA class I-restricted CMV epitopes from the immediate early 1 gene of CMV, coinfection with genetically distinct variants of CMV was detected in 52% of patients. However, in spite of exposure to multiple viral variants, the T cell responses in these patients were preferentially directed to a limited repertoire of HLA class I-restricted CMV epitopes, either conserved, variant, or cross-reactive. More importantly, we also demonstrate that long-term control of CMV infection after HSCT is primarily mediated through the efficient induction of stable antiviral T cell immunity irrespective of the nature of the antigenic target. These observations provide important insights for the future design of antiviral T cell-based immunotherapeutic strategies for transplant recipients, emphasizing the critical impact of robust immune reconstitution on efficient control of viral infection. IMPORTANCE: Infection and disease caused by human cytomegalovirus (CMV) remain a significant burden in patients undergoing hematopoietic stem cell transplantation (HSCT). The establishment of efficient immunological control, primarily mediated by cytotoxic T cells, plays a critical role in preventing CMV-associated disease in transplant recipients. Recent studies have also begun to investigate the impact genetic variation in CMV has upon disease outcome in transplant recipients. In this study, we sought to investigate the role T cell immunity plays in recognizing and controlling genetic variants of CMV. We demonstrate that while a significant proportion of HSCT recipients may be exposed to multiple genetic variants of CMV, this does not necessarily lead to immune control mediated via recognition of this genetic variation. Rather, immune control is associated with the efficient establishment of a stable immune response predominantly directed against immunodominant conserved T cell epitopes.


Assuntos
Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Genótipo , Transplante de Células-Tronco Hematopoéticas , Linfócitos T/imunologia , Transplantados , Coinfecção/imunologia , Coinfecção/virologia , Citomegalovirus/classificação , Citomegalovirus/genética , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genes Precoces , Humanos , Polimorfismo de Nucleotídeo Único
13.
Immunol Cell Biol ; 94(6): 573-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26846725

RESUMO

Evidence indicates that autoimmunity can be triggered by virus-specific CD8(+) T cells that crossreact with self-derived peptide epitopes presented on the cell surface by major histocompatibility complex class I (MHCI) molecules. Identification of the associated viral pathogens is challenging because individual T-cell receptors can potentially recognize up to a million different peptides. Here, we generate peptide length-matched combinatorial peptide library (CPL) scan data for a panel of virus-specific CD8(+) T-cell clones spanning different restriction elements and a range of epitope lengths. CPL scan data drove a protein database search limited to viruses that infect humans. Peptide sequences were ranked in order of likelihood of recognition. For all anti-viral CD8(+) T-cell clones examined in this study, the index peptide was either the top-ranked sequence or ranked as one of the most likely sequences to be recognized. Thus, we demonstrate that anti-viral CD8(+) T-cell clones are highly focused on their index peptide sequence and that 'CPL-driven database searching' can be used to identify the inciting virus-derived epitope for a given CD8(+) T-cell clone. Moreover, to augment access to CPL-driven database searching, we have created a publicly accessible webtool. Application of these methodologies in the clinical setting may clarify the role of viral pathogens in the etiology of autoimmune diseases.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , Bases de Dados de Proteínas , HIV-1/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Ligantes , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Reprodutibilidade dos Testes , Especificidade da Espécie
14.
Stem Cell Reports ; 5(4): 597-608, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26321144

RESUMO

The discovery of induced pluripotent stem cells (iPSCs) has created promising new avenues for therapies in regenerative medicine. However, the tumorigenic potential of undifferentiated iPSCs is a major safety concern for clinical translation. To address this issue, we demonstrated the efficacy of suicide gene therapy by introducing inducible caspase-9 (iC9) into iPSCs. Activation of iC9 with a specific chemical inducer of dimerization (CID) initiates a caspase cascade that eliminates iPSCs and tumors originated from iPSCs. We introduced this iC9/CID safeguard system into a previously reported iPSC-derived, rejuvenated cytotoxic T lymphocyte (rejCTL) therapy model and confirmed that we can generate rejCTLs from iPSCs expressing high levels of iC9 without disturbing antigen-specific killing activity. iC9-expressing rejCTLs exert antitumor effects in vivo. The system efficiently and safely induces apoptosis in these rejCTLs. These results unite to suggest that the iC9/CID safeguard system is a promising tool for future iPSC-mediated approaches to clinical therapy.


Assuntos
Apoptose , Caspase 9/genética , Células-Tronco Pluripotentes Induzidas/citologia , Neoplasias/terapia , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/transplante , Animais , Diferenciação Celular , Células Cultivadas , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos SCID , Neoplasias/genética , Neoplasias/patologia , Linfócitos T Citotóxicos/metabolismo
15.
J Immunol ; 194(10): 4668-75, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25855358

RESUMO

T cell cross-reactivity underpins the molecular mimicry hypothesis in which microbial peptides sharing structural features with host peptides stimulate T cells that cross-react with self-peptides, thereby initiating and/or perpetuating autoimmune disease. EBV represents a potentially important factor in the pathogenesis of several T cell-mediated autoimmune disorders, with molecular mimicry a likely mechanism. In this study, we describe a human self-peptide (DELEIKAY) that is a homolog of a highly immunogenic EBV T cell epitope (SELEIKRY) presented by HLA-B*18:01. This self-peptide was shown to bind stably to HLA-B*18:01, and peptide elution/mass spectrometric studies showed it is naturally presented by this HLA molecule on the surface of human cells. A significant proportion of CD8(+) T cells raised from some healthy individuals against this EBV epitope cross-reacted with the self-peptide. A diverse array of TCRs was expressed by the cross-reactive T cells, with variable functional avidity for the self-peptide, including some T cells that appeared to avoid autoreactivity by a narrow margin, with only 10-fold more of the self-peptide required for equivalent activation as compared with the EBV peptide. Structural studies revealed that the self-peptide-HLA-B*18:01 complex is a structural mimic of the EBV peptide-HLA-B*18:01 complex, and that the strong antiviral T cell response is primarily dependent on the alanine/arginine mismatch at position 7. To our knowledge, this is the first report confirming the natural presentation of a self-peptide cross-recognized in the context of self-HLA by EBV-reactive CD8(+) T cells. These results illustrate how aberrant immune responses and immunopathological diseases could be generated by EBV infection.


Assuntos
Antígenos Virais/imunologia , Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Herpesvirus Humano 4/imunologia , Apresentação de Antígeno/imunologia , Cromatografia Líquida , Reações Cruzadas/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Antígenos HLA-B/imunologia , Humanos , Mimetismo Molecular/imunologia , Espectrometria de Massas em Tandem
16.
Immunol Cell Biol ; 93(7): 625-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801351

RESUMO

Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this 'ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8(+) T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Seleção Clonal Mediada por Antígeno , Sangue Fetal/imunologia , Células-Tronco Hematopoéticas/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Proteínas da Matriz Viral/imunologia , Adulto , Envelhecimento/imunologia , Dasatinibe/farmacologia , Sangue Fetal/citologia , Citometria de Fluxo , Antígenos HLA/imunologia , Humanos , Memória Imunológica , Separação Imunomagnética , Imunofenotipagem , Recém-Nascido , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética
17.
J Virol ; 89(1): 703-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355876

RESUMO

UNLABELLED: Polymorphism in the human leukocyte antigen (HLA) loci ensures that the CD8(+) T cell response to viruses is directed against a diverse range of antigenic epitopes, thereby minimizing the impact of virus escape mutation across the population. The BZLF1 antigen of Epstein-Barr virus is an immunodominant target for CD8(+) T cells, but the response has been characterized only in the context of a limited number of HLA molecules due to incomplete epitope mapping. We have now greatly expanded the number of defined CD8(+) T cell epitopes from BZLF1, allowing the response to be evaluated in a much larger proportion of the population. Some regions of the antigen fail to be recognized by CD8(+) T cells, while others include clusters of overlapping epitopes presented by different HLA molecules. These highly immunogenic regions of BZLF1 include polymorphic sequences, such that up to four overlapping epitopes are impacted by a single amino acid variation common in different regions of the world. This focusing of the immune response to limited regions of the viral protein could be due to sequence similarity to human proteins creating "immune blind spots" through self-tolerance. This study significantly enhances the understanding of the immune response to BZLF1, and the precisely mapped T cell epitopes may be directly exploited in vaccine development and adoptive immunotherapy. IMPORTANCE: Epstein-Barr virus (EBV) is an important human pathogen, associated with several malignancies, including nasopharyngeal carcinoma and Hodgkin lymphoma. T lymphocytes are critical for virus control, and clinical trials aimed at manipulating this arm of the immune system have demonstrated efficacy in treating these EBV-associated diseases. These trials have utilized information on the precise location of viral epitopes for T cell recognition, for either measuring or enhancing responses. In this study, we have characterized the T cell response to the highly immunogenic BZLF1 antigen of EBV by greatly expanding the number of defined T cell epitopes. An unusual clustering of epitopes was identified, highlighting a small region of BZLF1 that is targeted by the immune response of a high proportion of the world's population. This focusing of the immune response could be utilized in developing vaccines/therapies with wide coverage, or it could potentially be exploited by the virus to escape the immune response.


Assuntos
Epitopos de Linfócito T/imunologia , Herpesvirus Humano 4/imunologia , Transativadores/imunologia , Linfócitos T CD8-Positivos/imunologia , Mapeamento de Epitopos , Humanos
18.
Clin Transl Immunology ; 3(10): e27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25505955

RESUMO

Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disease of the central nervous system (CNS) causing progressive disability. Many observations implicate Epstein-Barr virus (EBV) in the pathogenesis of MS, namely universal EBV seropositivity, high anti-EBV antibody levels, alterations in EBV-specific CD8(+) T-cell immunity, increased spontaneous EBV-induced transformation of peripheral blood B cells, increased shedding of EBV from saliva and accumulation of EBV-infected B cells and plasma cells in the brain. Several mechanisms have been postulated to explain the role of EBV in the development of MS including cross-reactivity between EBV and CNS antigens, bystander damage to the CNS by EBV-specific CD8(+) T cells, activation of innate immunity by EBV-encoded small RNA molecules in the CNS, expression of αB-crystallin in EBV-infected B cells leading to a CD4(+) T-cell response against oligodendrocyte-derived αB-crystallin and EBV infection of autoreactive B cells, which produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells in the CNS. The rapidly accumulating evidence for a pathogenic role of EBV in MS provides ground for optimism that it might be possible to prevent and cure MS by effectively controlling EBV infection through vaccination, antiviral drugs or treatment with EBV-specific cytotoxic CD8(+) T cells. Adoptive immunotherapy with in vitro-expanded autologous EBV-specific CD8(+) T cells directed against viral latent proteins was recently used to treat a patient with secondary progressive MS. Following the therapy, there was clinical improvement, decreased disease activity on magnetic resonance imaging and reduced intrathecal immunoglobulin production.

19.
PLoS Pathog ; 10(5): e1004135, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24854165

RESUMO

To follow the fate of CD8+ T cells responsive to Plasmodium berghei ANKA (PbA) infection, we generated an MHC I-restricted TCR transgenic mouse line against this pathogen. T cells from this line, termed PbT-I T cells, were able to respond to blood-stage infection by PbA and two other rodent malaria species, P. yoelii XNL and P. chabaudi AS. These PbT-I T cells were also able to respond to sporozoites and to protect mice from liver-stage infection. Examination of the requirements for priming after intravenous administration of irradiated sporozoites, an effective vaccination approach, showed that the spleen rather than the liver was the main site of priming and that responses depended on CD8α+ dendritic cells. Importantly, sequential exposure to irradiated sporozoites followed two days later by blood-stage infection led to augmented PbT-I T cell expansion. These findings indicate that PbT-I T cells are a highly versatile tool for studying multiple stages and species of rodent malaria and suggest that cross-stage reactive CD8+ T cells may be utilized in liver-stage vaccine design to enable boosting by blood-stage infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunização Secundária/métodos , Estágios do Ciclo de Vida/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Receptores de Antígenos de Linfócitos T/genética , Esporozoítos/imunologia , Transferência Adotiva , Animais , Anopheles , Sangue/parasitologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Células Cultivadas , Fígado/imunologia , Fígado/parasitologia , Malária/sangue , Malária/imunologia , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium chabaudi , Plasmodium yoelii , Receptores de Antígenos de Linfócitos T/imunologia
20.
Mult Scler ; 20(14): 1825-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24842963

RESUMO

BACKGROUND: Patients with multiple sclerosis (MS) have a deficiency of circulating CD8+ T cells, which might impair control of Epstein-Barr virus (EBV) and predispose to MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. Based on the expression of CD45RA and CD62L, CD4+ T cells and CD8+ T cells can be subdivided into four subsets with distinct homing and functional properties, namely: naïve, central memory, effector memory (EM) and effector memory re-expressing CD45RA (EMRA) cells. OBJECTIVE: Our aim was to determine which memory subsets are involved in the CD8+ T cell deficiency and how these relate to clinical course. METHODS: We used flow cytometry to analyze the memory phenotypes of T cells in the blood of 118 MS patients and 112 healthy subjects. RESULTS: MS patients had a decreased frequency of EM (CD45RA(-)CD62L(-)) and EMRA (CD45RA(+)CD62L(-)) CD8+ T cells, which was present at the onset of disease and persisted throughout the clinical course. The frequencies of CD4+ EM and EMRA T cells were normal. CONCLUSION: Deficiency of effector memory CD8+ T cells is an early and persistent feature of MS and might underlie the impaired CD8+ T cell control of EBV.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Antígenos Comuns de Leucócito/imunologia , Esclerose Múltipla/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Herpesvirus Humano 4/imunologia , Humanos , Selectina L/imunologia , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA