Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 938: 173270, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772491

RESUMO

Accurate measuring, mapping, and monitoring of mangrove forests support the sustainable management of mangrove blue carbon in the Asia-Pacific. Remote sensing coupled with modeling can efficiently and accurately estimate mangrove blue carbon stocks at larger spatiotemporal extents. This study aimed to identify trends in remote sensing/modeling employed in estimating mangrove blue carbon, attributes/variations in mangrove carbon sequestration estimated using remote sensing, and to compile research gaps and opportunities, followed by providing recommendations for future research. Using a systematic literature review approach, we reviewed 105 remote sensing-based peer-reviewed articles (1990 - June 2023). Despite their high mangrove extent, there was a paucity of studies from Myanmar, Bangladesh, and Papua New Guinea. The most frequently used sensor was Sentinel-2 MSI, accounting for 14.5 % of overall usage, followed by Landsat 8 OLI (11.5 %), ALOS-2 PALSAR-2 (7.3 %), ALOS PALSAR (7.2 %), Landsat 7 ETM+ (6.1 %), Sentinel-1 (6.7 %), Landsat 5 TM (5.5 %), SRTM DEM (5.5 %), and UAV-LiDAR (4.8 %). Although parametric methods like linear regression remain the most widely used, machine learning regression models such as Random Forest (RF) and eXtreme Gradient Boost (XGB) have become popular in recent years and have shown good accuracy. Among a variety of attributes estimated, below-ground mangrove blue carbon and the valuation of carbon stock were less studied. The variation in carbon sequestration potential as a result of location, species, and forest type was widely studied. To improve the accuracy of blue carbon measurements, standardized/coordinated and innovative methodologies accompanied by credible information and actionable data should be carried out. Technical monitoring (every 2-5 years) enhanced by remote sensing can provide accurate and precise data for sustainable mangrove management while opening ventures for voluntary carbon markets to benefit the environment and local livelihood in developing countries in the Asia-Pacific region.

2.
Mol Ecol ; 33(4): e17260, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197286

RESUMO

Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.


Assuntos
Avicennia , Filogenia , Avicennia/genética , Arábia , Ecossistema , Oceano Índico
3.
Genome Biol Evol ; 14(10)2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36161313

RESUMO

Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp. EZ from the Persian/Arabian Gulf. The genome is assembled into 210 scaffolds totaling 817.8 Mb with an N50 of 39.5 Mb. From this assembly, we determined that the E. sp. EZ genome consists of 2n = 42 chromosomes. BUSCO analysis showed that 95.3% of BUSCO genes were complete. Ab initio and transcript-informed gene modeling and annotation identified 29,405 genes, including a conserved Hox cluster. E. sp. EZ can be found in high-temperature and high-salinity environments, and we therefore compared E. sp. EZ gene families and transcription factors associated with environmental stress response ("defensome") with other echinoid species with similar high-quality genomic resources. While the number of defensome genes was broadly similar for all species, we identified strong signatures of positive selection in E. sp. EZ noncoding elements near genes involved in environmental response pathways as well as losses of transcription factors important for environmental response. These data provide key insights into the biology of E. sp. EZ as well as the diversification of Echinometra more widely and will serve as a useful tool for the community to explore questions in this taxonomic group and beyond.


Assuntos
Cromossomos , Ouriços-do-Mar , Animais , Cromossomos/genética , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Ouriços-do-Mar/genética , Fatores de Transcrição/genética
4.
PeerJ ; 10: e13395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651741

RESUMO

Reef-building corals live very close to their upper thermal limits and their persistence is imperiled by a rapidly warming climate. Human interventions may be used to increase the thermal limits of sensitive corals by cross-breeding with heat-adapted populations. However, the scope of breeding interventions is constrained by regional variation in the annual reproductive cycle of corals. Here we use cryopreservation technology to overcome this barrier and cross-breed conspecific coral populations across ocean basins for the first time. During regional spawning events, sperm samples were cryopreserved from populations of the widespread Indo-Pacific coral, Platygyra daedalea, from the southern Persian Gulf (maximum daily sea surface temperature of 36 °C), the Oman Sea (33 °C), and the central Great Barrier Reef (30 °C). These sperm samples were thawed during a later spawning event to test their ability to fertilize freshly spawned eggs of P. daedalea colonies from the central Great Barrier Reef. Average fertilization success for the Persian Gulf (9%) and Oman Sea (6%) sperm were 1.4-2.5 times lower than those for the native cryopreserved sperm from Great Barrier Reef (13-15%), potentially due to lower sperm quality of the Middle Eastern sperm and/or reproductive incompatibility between these distant populations. Overall, fertilization success with cryopreserved sperm was low compared with fresh sperm (>80%), likely due to the low motility of thawed sperm (≤5%, reduced from 50% to >90% in fresh sperm). To evaluate whether cross-bred offspring had enhanced thermal tolerance, the survival of larvae sired by Persian Gulf cryopreserved sperm, Great Barrier Reef cryopreserved sperm, and Great Barrier Reef fresh sperm was monitored for six days at ambient (27 °C) and elevated (33 °C) temperature. Against expectations of thermal tolerance enhancement, survival of larvae sired by Persian Gulf cryopreserved sperm was 2.6 times lower than larvae sired by Great Barrier Reef fresh sperm at 33 °C (27% versus 71%), but did not differ at 27 °C (77% versus 84%). This lack of enhanced thermal tolerance was unlikely due to outbreeding depression as survival was equally poor in larvae sired by Great Barrier Reef cryopreserved sperm. Rather, follow-up tests showed that cryoprotectant exposure during fertilization (0.1% DMSO) has a negative effect on the survival of P. daedalea larvae which is exacerbated at elevated temperature. Collectively, our findings highlight challenges of breeding corals for enhanced thermal tolerance using cryopreserved sperm, which may be overcome by methodological advances in the collection and preservation of high-quality motile sperm and minimizing the exposure time of eggs to cryoprotectants.


Assuntos
Antozoários , Termotolerância , Masculino , Animais , Humanos , Melhoramento Vegetal , Sementes , Criopreservação/veterinária , Espermatozoides , Crioprotetores , Oceano Índico
5.
Sci Adv ; 8(2): eabl7287, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020424

RESUMO

Coral populations in the world's warmest reefs, the Persian/Arabian Gulf (PAG), represent an ideal model system to understand the evolutionary response of coral populations to past and present environmental change and to identify genomic loci that contribute to elevated thermal tolerance. Here, we use population genomics of the brain coral Platygyra daedalea to show that corals in the PAG represent a distinct subpopulation that was established during the Holocene marine transgression, and identify selective sweeps in their genomes associated with thermal adaptation. We demonstrate the presence of positive and disruptive selection and provide evidence for selection of differentially methylated haplotypes. While demographic analyses suggest limited potential for genetic rescue of neighboring Indian Ocean reefs, the presence of putative targets of selection in corals outside of the PAG offers hope that loci associated with thermal tolerance may be present in the standing genetic variation.

6.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34417178

RESUMO

Reef-building corals thriving in extreme thermal environments may provide genetic variation that can assist the evolution of populations to rapid climate warming. However, the feasibility and scale of genetic improvements remain untested despite ongoing population declines from recurrent thermal stress events. Here, we show that corals from the hottest reefs in the world transfer sufficient heat tolerance to a naïve population sufficient to withstand end-of-century warming projections. Heat survival increased up to 84% when naïve mothers were selectively bred with fathers from the hottest reefs because of strong heritable genetic effects. We identified genomic loci associated with tolerance variation that were enriched for heat shock proteins, oxidative stress, and immune functions. Unexpectedly, several coral families exhibited survival rates and genomic associations deviating from origin predictions, including a few naïve purebreds with exceptionally high heat tolerance. Our findings highlight previously uncharacterized enhanced and intrinsic potential of coral populations to adapt to climate warming.

7.
Mar Pollut Bull ; 170: 112595, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34126446

RESUMO

The response of mangrove (Avicennia marina) seedlings to treated (wet) sludge from a sewage treatment plant (STP) was tested in a randomized block design experiment at a tree nursery on Mubarraz Island in the Arabian Gulf. The growth response of seedlings to half-strength and full-strength STP sludge was monitored over 103 days and compared with the response to freshwater, seawater and half-strength seawater treatments. Sludge treatments resulted in significantly greater plant growth, leaf number, leaf biomass and root biomass than the other treatments did. The positive effect of STP sludge on seedling growth is attributed to enhanced levels of total nitrogen (8.9 ± 0.1 mg l-1) and total phosphorus (7.8 ± 0.2 mg l-1) in the sludge and its low salinity. These results suggest that sludge from sewage treatment plants may be beneficially used in mangrove nurseries and plantations in this arid region, where soils are nutrient-poor and fresh water is scarce.


Assuntos
Avicennia , Plântula , Biomassa , Salinidade , Esgotos
8.
Mol Ecol ; 30(15): 3869-3881, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008895

RESUMO

Shifts in microbial communities represent a rapid response mechanism for host organisms to respond to changes in environmental conditions. Therefore, they are likely to be important in assisting the acclimatization of hosts to seasonal temperature changes as well as to variation in temperatures across a species' range. The Persian/Arabian Gulf is the world's warmest sea, with large seasonal fluctuations in temperature (20℃ - 37℃) and is connected to the Gulf of Oman which experiences more typical oceanic conditions (<32℃ in the summer). This system is an informative model for understanding how symbiotic microbial assemblages respond to thermal variation across temporal and spatial scales. Here, we elucidate the role of temperature on the microbial gut community of the sea urchin Echinometra sp. EZ and identify microbial taxa that are tightly correlated with the thermal environment. We generated two independent datasets with a high degree of geographic and temporal resolution. The results show that microbial communities vary across thermally variable habitats, display temporal shifts that correlate with temperature, and can become more disperse as temperatures rise. The relative abundances of several ASVs significantly correlate with temperature in both independent datasets despite the >300 km distance between the furthest sites and the extreme seasonal variations. Notably, over 50% of the temperature predictive ASVs identified from the two datasets belonged to the family Vibrionaceae. Together, our results identify temperature as a robust predictor of community-level variation and highlight specific microbial taxa putatively involved in the response to thermal environment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Microbiota/genética , Ouriços-do-Mar , Estações do Ano , Temperatura
9.
G3 (Bethesda) ; 11(1)2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33561229

RESUMO

The gray mangrove [Avicennia marina (Forsk.) Vierh.] is the most widely distributed mangrove species, ranging throughout the Indo-West Pacific. It presents remarkable levels of geographic variation both in phenotypic traits and habitat, often occupying extreme environments at the edges of its distribution. However, subspecific evolutionary relationships and adaptive mechanisms remain understudied, especially across populations of the West Indian Ocean. High-quality genomic resources accounting for such variability are also sparse. Here we report the first chromosome-level assembly of the genome of A. marina. We used a previously release draft assembly and proximity ligation libraries Chicago and Dovetail HiC for scaffolding, producing a 456,526,188-bp long genome. The largest 32 scaffolds (22.4-10.5 Mb) accounted for 98% of the genome assembly, with the remaining 2% distributed among much shorter 3,759 scaffolds (62.4-1 kb). We annotated 45,032 protein-coding genes using tissue-specific RNA-seq data in combination with de novo gene prediction, from which 34,442 were associated to GO terms. Genome assembly and annotated set of genes yield a 96.7% and 95.1% completeness score, respectively, when compared with the eudicots BUSCO dataset. Furthermore, an FST survey based on resequencing data successfully identified a set of candidate genes potentially involved in local adaptation and revealed patterns of adaptive variability correlating with a temperature gradient in Arabian mangrove populations. Our A. marina genomic assembly provides a highly valuable resource for genome evolution analysis, as well as for identifying functional genes involved in adaptive processes and speciation.


Assuntos
Avicennia , Genoma de Planta , Avicennia/genética , Ambientes Extremos , Genômica , Anotação de Sequência Molecular , Fenótipo
10.
Mar Environ Res ; 161: 105095, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32882590

RESUMO

Habitat mapping is essential for the management and conservation of coastal marine habitats. However, accurate and up-to-date habitat maps are rarely available for the marine realm. In this study, we mapped the coastal marine habitats of >400 km of coastline in the north-western United Arab Emirates (UAE) using a combination of data sources including remote sensing, extensive ground-truthing points, local expert knowledge and existing information. We delineated 17 habitats, including critical habitats for marine biodiversity such as coral reefs and mangroves, and previously unreported oyster beds and deep seagrasses. This innovative approach was able to produce a coastal marine habitat map with an overall accuracy of 77%. The approach allowed for the production of a spatial tool well-suited for the needs of environmental management and conservation in a previously data-deficient area of the United Arab Emirates.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Recifes de Corais , Emirados Árabes Unidos
11.
Nat Commun ; 11(1): 3832, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737315

RESUMO

Tropical ectotherms are hypothesized to be vulnerable to environmental changes, but cascading effects of organismal tolerances on the assembly and functioning of reef fish communities are largely unknown. Here, we examine differences in organismal traits, assemblage structure, and productivity of cryptobenthic reef fishes between the world's hottest, most extreme coral reefs in the southern Arabian Gulf and the nearby, but more environmentally benign, Gulf of Oman. We show that assemblages in the Arabian Gulf are half as diverse and less than 25% as abundant as in the Gulf of Oman, despite comparable benthic composition and live coral cover. This pattern appears to be driven by energetic deficiencies caused by responses to environmental extremes and distinct prey resource availability rather than absolute thermal tolerances. As a consequence, production, transfer, and replenishment of biomass through cryptobenthic fish assemblages is greatly reduced on Earth's hottest coral reefs. Extreme environmental conditions, as predicted for the end of the 21st century, could thus disrupt the community structure and productivity of a critical functional group, independent of live coral loss.


Assuntos
Antozoários/fisiologia , Biodiversidade , Peixes/fisiologia , Modelos Estatísticos , Adaptação Fisiológica , Animais , Biomassa , Recifes de Corais , Planeta Terra , Ecossistema , Peixes/classificação , Cadeia Alimentar , Temperatura Alta , Oriente Médio , Oceanos e Mares
12.
Genome Biol Evol ; 12(10): 1819-1829, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32697837

RESUMO

Extreme environmental gradients represent excellent study systems to better understand the variables that mediate patterns of genomic variation between populations. They also allow for more accurate predictions of how future environmental change might affect marine species. The Persian/Arabian Gulf is extreme in both temperature and salinity, whereas the adjacent Gulf of Oman has conditions more typical of tropical oceans. The sea urchin Echinometra sp. EZ inhabits both of these seas and plays a critical role in coral reef health as a grazer and bioeroder, but, to date, there have been no population genomic studies on this or any urchin species in this unique region. E sp. EZ's life history traits (e.g., large population sizes, large reproductive clutches, and long life spans), in theory, should homogenize populations unless nonneutral processes are occurring. Here, we generated a draft genome and a restriction site-associated DNA sequencing data set from seven populations along an environmental gradient across the Persian/Arabian Gulf and the Gulf of Oman. The estimated genome size of E. sp. EZ was 609 Mb and the heterozygosity was among the highest recorded for an echinoderm at 4.5%. We recovered 918 high-quality SNPs from 85 individuals which we then used in downstream analyses. Population structure analyses revealed a high degree of admixture between all sites, although there was population differentiation and significant pairwise FST values between the two seas. Preliminary results suggest migration is bidirectional between the seas and nine candidate loci were identified as being under putative natural selection, including one collagen gene. This study is the first to investigate the population genomics of a sea urchin from this extreme environmental gradient and is an important contribution to our understanding of the complex spatial patterns that drive genomic divergence.


Assuntos
Migração Animal , Ambientes Extremos , Genoma , Ouriços-do-Mar/genética , Seleção Genética , Animais , Ecossistema , Oceano Índico , Polimorfismo de Nucleotídeo Único , Salinidade , Temperatura
13.
Mol Ecol ; 29(5): 899-911, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32017263

RESUMO

Reef-building corals are at risk of extinction from ocean warming. While some corals can enhance their thermal limits by associating with dinoflagellate photosymbionts of superior stress tolerance, the extent to which symbiont communities will reorganize under increased warming pressure remains unclear. Here we show that corals in the hottest reefs in the world in the Persian Gulf maintain associations with the same symbionts across 1.5 years despite extreme seasonal warming and acute heat stress (≥35°C). Persian Gulf corals predominantly associated with Cladocopium (clade C) and most also hosted Symbiodinium (clade A) and/or Durusdinium (clade D). This is in contrast to the neighbouring and milder Oman Sea, where corals associated with Durusdinium and only a minority hosted background levels of Cladocopium. During acute heat stress, the higher prevalence of Symbiodinium and Durusdinium in bleached versus nonbleached Persian Gulf corals indicates that genotypes of these background genera did not confer bleaching resistance. Within symbiont genera, the majority of ITS2 rDNA type profiles were unique to their respective coral species, confirming the existence of host-specific symbiont lineages. Notably, further differentiation among Persian Gulf sites demonstrates that symbiont populations are either isolated or specialized over tens to hundreds of kilometres. Thermal tolerance across coral species was associated with the prevalence of a single ITS2 intragenomic sequence variant (C3gulf), definitive of the Cladocopium thermophilum group. The abundance of C3gulf was highest in bleaching-resistant corals and at warmer sites, potentially indicating a specific symbiont genotype (or set of genotypes) that may play a role in thermal tolerance that warrants further investigation. Together, our findings indicate that co-evolution of host-Symbiodiniaceae partnerships favours fidelity rather than flexibility in extreme environments and under future warming.


Assuntos
Antozoários/fisiologia , Dinoflagellida/classificação , Temperatura Alta , Simbiose , Animais , DNA Espaçador Ribossômico/genética , Dinoflagellida/fisiologia , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Oceano Índico
14.
Glob Chang Biol ; 26(4): 2081-2092, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31840906

RESUMO

Invasive non-native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS-ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS-ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest-risk horizon NNS the green crab Carcinus maenas, and the extant macro-alga Hypnea musciformis. This is the first horizon-scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision-making for the targeted monitoring and management in the region to prevent new bio-invasions and to control existing species, including their potential for spread.

15.
Ecol Evol ; 9(19): 11215-11226, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641466

RESUMO

Ocean circulation, geological history, geographic distance, and seascape heterogeneity play an important role in phylogeography of coral-dependent fishes. Here, we investigate potential genetic population structure within the yellowbar angelfish (Pomacanthus maculosus) across the Northwestern Indian Ocean (NIO). We then discuss our results with respect to the above abiotic features in order to understand the contemporary distribution of genetic diversity of the species. To do so, restriction site-associated DNA sequencing (RAD-seq) was utilized to carry out population genetic analyses on P. maculosus sampled throughout the species' distributional range. First, genetic data were correlated to geographic and environmental distances, and tested for isolation-by-distance and isolation-by-environment, respectively, by applying the Mantel test. Secondly, we used distance-based and model-based methods for clustering genetic data. Our results suggest the presence of two putative barriers to dispersal; one off the southern coast of the Arabian Peninsula and the other off northern Somalia, which together create three genetic subdivisions of P. maculosus within the NIO. Around the Arabian Peninsula, one genetic cluster was associated with the Red Sea and the adjacent Gulf of Aden in the west, and another cluster was associated with the Arabian Gulf and the Sea of Oman in the east. Individuals sampled in Kenya represented a third genetic cluster. The geographic locations of genetic discontinuities observed between genetic subdivisions coincide with the presence of substantial upwelling systems, as well as habitat discontinuity. Our findings shed light on the origin and maintenance of genetic patterns in a common coral reef fish inhabiting the NIO, and reinforce the hypothesis that the evolution of marine fish species in this region has likely been shaped by multiple vicariance events.

16.
Mar Pollut Bull ; 142: 93-102, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31232353

RESUMO

The coastlines of many Arabian cities are now dominated by structures such as seawalls, breakwaters and jetties as urbanization has expanded rapidly in the region. Coastal development has substantially degraded the mangrove forests, saltmarshes, seagrass meadows, oyster beds and coral reefs that traditionally provided invaluable ecosystem goods and services to coastal trading villages of the Arabian Gulf. Regional awareness of environmental issues is growing, however, and local governments are increasingly promoting more sustainable urban development. The use of ecological engineering approaches, along with improved environmental policies, may mitigate some past impacts, and will potentially create new development projects with greater ecological benefits for more sustainable growth in the future. In this paper, we discuss past coastal development in the Gulf, and offer advice on how ecological engineering could be used to enhance the ecological benefits of coastal infrastructure, particularly by encouraging the colonization of juvenile corals and fishes. Such approaches can encourage more sustainable development of this increasingly urbanized seascape.


Assuntos
Conservação dos Recursos Naturais/métodos , Recifes de Corais , Desenvolvimento Sustentável , Animais , Antozoários , Cidades , Ecossistema , Política Ambiental , Peixes , Oceano Índico , Campos de Petróleo e Gás , Ostreidae , Urbanização
17.
Mol Ecol Resour ; 19(4): 1063-1080, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30740899

RESUMO

We present SymPortal (SymPortal.org), a novel analytical framework and platform for genetically resolving the algal symbionts of reef corals using next-generation sequencing (NGS) data of the ITS2 rDNA. Although the ITS2 marker is widely used to genetically characterize taxa within the family Symbiodiniaceae (formerly the genus Symbiodinium), the multicopy nature of the marker complicates its use. Commonly, the intragenomic diversity resultant from this multicopy nature is collapsed by analytical approaches, thereby focusing on only the most abundant sequences. In contrast, SymPortal employs logic to identify within-sample informative intragenomic sequences, which we have termed 'defining intragenomic variants' (DIVs), to identify ITS2-type profiles representative of putative Symbiodiniaceae taxa. By making use of this intragenomic ITS2 diversity, SymPortal is able to resolve genetic delineations using the ITS2 marker at a level that was previously only possible by using additional genetic markers. We demonstrate this by comparing this novel approach to the most commonly used alternative approach for NGS ITS2 data, the 97% similarity clustering to operational taxonomic units (OTUs). The SymPortal platform accepts NGS raw sequencing data as input to provide an easy-to-use, standardization-enforced, and community-driven framework that integrates with a database to gain resolving power with increased use. We consider that SymPortal, in conjunction with ongoing large-scale sampling and sequencing efforts, should play an instrumental role in making future sampling efforts more comparable and in maximizing their efficacy in working towards the classification of the global Symbiodiniaceae diversity.


Assuntos
Antozoários/parasitologia , Biologia Computacional/métodos , DNA de Protozoário/genética , DNA Espaçador Ribossômico/genética , Dinoflagellida/classificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Animais , DNA de Protozoário/química , DNA Espaçador Ribossômico/química , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação
18.
Mol Ecol ; 27(24): 5180-5194, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30411823

RESUMO

Scleractinian corals occur in tropical regions near their upper thermal limits and are severely threatened by rising ocean temperatures. However, several recent studies have shown coral populations can harbour genetic variation in thermal tolerance. Here, we have extended these approaches to study heat tolerance of corals in the Persian/Arabian Gulf, where heat-tolerant local populations experience extreme summer temperatures (up to 36°C). To evaluate whether selection has depleted genetic variation in thermal tolerance, estimate potential future adaptive responses and understand the functional basis for these corals' unusual heat tolerance, we conducted controlled crosses in the Gulf coral Platygyra daedalea. Heat tolerance is highly heritable in this population (h 2  = 0.487-0.748), suggesting substantial potential for adaptive responses to selection for elevated temperatures. To identify genetic markers associated with this variation, we conducted genomewide SNP genotyping in parental corals and tested for relationships between paternal genotype and offspring thermal tolerance. Resulting multilocus SNP genotypes explained a large fraction of variation in thermal tolerance in these crosses (69%). To investigate the functional basis of these differences in thermal tolerance, we profiled transcriptional responses in tolerant and susceptible families, revealing substantial sire effects on transcriptional responses to thermal stress. We also studied sequence variation in these expressed sequences, identifying alleles and functional groups of differentially expressed genes associated with thermal tolerance. Our findings demonstrate that corals in this population harbour extensive genetic variation in thermal tolerance, and heat-tolerant phenotypes differ in both gene sequences and transcriptional stress responses from their susceptible counterparts.


Assuntos
Antozoários/genética , Antozoários/fisiologia , Marcadores Genéticos , Temperatura Alta , Transcriptoma , Adaptação Fisiológica/genética , Animais , Cruzamentos Genéticos , Genótipo , Oceano Índico , Polimorfismo de Nucleotídeo Único , Estações do Ano , Estresse Fisiológico , Emirados Árabes Unidos
19.
J Phycol ; 54(5): 762-764, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29981276

RESUMO

The binary designation Symbiodinium thermophilum was invalid due to the absence of an illustration as required by Article 44.2 of the ICN. Herein, it is validated. This species is the most common symbiont in reef corals in the southern Persian/Arabian Gulf, the world's hottest body of water sustaining reef coral growth.


Assuntos
Dinoflagellida/classificação , Terminologia como Assunto , Recifes de Corais , Oceano Índico , Simbiose
20.
Mitochondrial DNA B Resour ; 3(2): 1225-1227, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33474471

RESUMO

The complete mitogenome of Echinometra sp. EZ has been described and fully annotated in this study. Phylogenetic analysis of cytochrome c oxidase subunit I (COI) from six Echinometra species confirms that our sample is E. sp. EZ. The mitogenome is 15,698 bp in length and contains 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a non-coding region with an identical organization to other Echinoidea. The E. sp. EZ mitogenome shared ∼99.1% identity to the published Echinometra mathaei mitogenome, differing by 147 SNPs. The E. sp. EZ mitogenome will serve as a resource that can be applied to disentangling the Echinometra species complex and to future population genetic studies of this ecologically important sea urchin species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA