Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 36(12): 3351-3358, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28703896

RESUMO

Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide-capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination > wood frogs alone > bullfrogs in combination > bullfrogs alone > controls. In all gold-exposed groups of tadpoles, gold was concentrated in the anterior region compared with the posterior region of the body. The concentration of gold nanoparticles in the anterior region of wood frogs both alone and in combination with bullfrogs was significantly higher than the corresponding posterior regions. We also measured depuration time of gold in wood frogs. After 21 d in a solution of gold nanoparticles, tadpoles lost >83% of internalized gold when placed in gold-free water for 5 d. After 10 d in gold-free water, tadpoles lost 94% of their gold. After 15 d, gold concentrations were below the level of detection. Our finding of differential uptake between closely related species living in similar habitats with overlapping geographical distributions argues against generalizing toxicological effects of nanoparticles for a large group of organisms based on measurements in only one species. Environ Toxicol Chem 2017;36:3351-3358. © 2017 SETAC.


Assuntos
Ouro/metabolismo , Nanopartículas Metálicas , Ranidae/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Ouro/toxicidade , Larva/metabolismo , Nanopartículas Metálicas/toxicidade , Rana catesbeiana/metabolismo , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Pollut Res Int ; 24(1): 725-731, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27752949

RESUMO

Exposure to human antidepressants has been shown to disrupt locomotion and other foot-mediated mechanisms in aquatic snails. We tested the effect of three selective serotonin reuptake inhibitor (SSRI)- and one selective serotonin-norepinephrine reuptake inhibitor (SNRI)-type antidepressants on the righting response in the marine snail, Ilyanassa obsoleta. All four antidepressants (fluoxetine, sertraline, paroxetine, venlafaxine) significantly increased righting time compared with controls with an exposure time as short as 1 h. Dose responses were nonmonotonic with effects seen mainly at the lowest exposure concentrations and shortest duration. The lowest concentration to show an effect was 3.45 µg/L fluoxetine with a 2-h exposure period and is about 3.71 times higher than environmental concentrations. Our results highlight rapid disruption of another foot-mediated behavior in aquatic snails by SSRI-type antidepressants. We discuss these and other reported nonmonotonic dose responses caused by antidepressants in terms of the various possible physiological mechanisms of action in nontarget aquatic species.


Assuntos
Antidepressivos/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Inibidores da Recaptação de Serotonina e Norepinefrina/toxicidade , Caramujos/efeitos dos fármacos , Animais , Fluoxetina/toxicidade , Paroxetina/toxicidade , Sertralina/toxicidade , Caramujos/fisiologia , Cloridrato de Venlafaxina/toxicidade
3.
Mar Environ Res ; 103: 89-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25481651

RESUMO

Human antidepressants have been previously shown to induce foot detachment from the substrate in aquatic snails. Prior to foot detachment, antidepressants also affect snail crawling speed. We tested two commonly prescribed antidepressants, venlafaxine ("Effexor") and fluoxetine ("Prozac") on crawling speed and time to reach the air-water interface in two species of marine snail, the oyster drill Urosalpinx cinerea and the American starsnail Lithopoma americanum. Exposure to venlafaxine increased crawling speed in both species, while fluoxetine slowed them down. Our lowest LOEC (lowest observed effect concentration) was 31.3 µg/L venlafaxine in Urosalpinx. Similarly, snails (L. americanum) exposed to venlafaxine tended to move faster and more often to the air-water interface, but exposure to fluoxetine slowed them down. Our lowest LOEC was 345 µg/L fluoxetine in Lithopoma. These results indicate that venlafaxine boosts locomotion, while fluoxetine reduces it, and both behaviors are preludes to foot detachment. The different effects of these two antidepressants on snail locomotion suggest differing physiological mechanisms of action in marine snails as well as possible ecological consequences.


Assuntos
Antidepressivos/toxicidade , Cicloexanóis/toxicidade , Fluoxetina/toxicidade , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Locomoção/efeitos dos fármacos , Especificidade da Espécie , Cloridrato de Venlafaxina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA