Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38470719

RESUMO

MIL-53(Al) is a metal-organic framework (MOF) with unique properties, including structural flexibility, thermal stability, and luminescence. Its ability to adsorb volatile organic compounds (VOCs) and water vapor makes it a promising platform for sensing applications. This study investigated the adsorption mechanism of MIL-53(Al) with different VOCs, including ketones, alcohols, aromatics, and water molecules, focusing on structural transformations due to pore size variation and photoluminescence properties. The reported results assess MIL-53(Al) selectivity towards different VOCs and provide insights into their fundamental properties and potential applications in sensing.

2.
Adv Healthc Mater ; 13(16): e2303692, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508224

RESUMO

Zero-dimensional boron nitride quantum dots (BNQDs) are arousing interest for their versatile optical, chemical, and biochemical properties. Introducing carbon contents in BNQDs nanostructures is a great challenge to modulate their physicochemical properties. Among the carbon moieties, phenolic groups have attracted attention for their biochemical properties and phenol-containing nanomaterials are showing great promise for biomedical applications. Herein, the first example of direct synthesis of water dispersible BNQDs exposing phenolic and carboxylic groups is presented. The carbon-BNQDs are prepared in a single-step by solvent-assisted reaction of urea with boronic reagents and are characterized by optical absorption, luminescence, Raman, Fourier transform infrared and NMR spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and atomic force microscopy. The carbon-BNQDs exhibit nanodimension, stability, high photothermal conversion efficiency, pH-responsive luminescence and Z-potential. The potential of the carbon-BNQDs to provide photothermal materials in solid by embedding in agarose substrate is successfully investigated. The carbon-BNQDs exhibit biocompatibility on colorectal adenocarcinoma cells (Caco-2) and protective effects from chemical and oxidative stress on Caco-2, osteosarcoma (MG-63), and microglial (HMC-3) cells. Amplicon mRNA-seq analyses for the expression of 56 genes involve in oxidative-stress and inflammation are performed to evaluate the molecular events responsible for the cell protective effects of the carbon-BNQDs.


Assuntos
Compostos de Boro , Carbono , Pontos Quânticos , Pontos Quânticos/química , Humanos , Compostos de Boro/química , Compostos de Boro/farmacologia , Células CACO-2 , Carbono/química , Luminescência , Sobrevivência Celular/efeitos dos fármacos
3.
J Mater Chem B ; 12(4): 952-961, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37975827

RESUMO

The development of multifunctional nanohybrid systems for combined photo-induced hyperthermia and drug release is a challenging topic in the research of advanced materials for application in the biomedical field. Here, we report the first example of a three-component red-light-responsive nanosystem consisting of graphene oxide, gold nanoparticles and poly-N-isopropylacrylamide (GO-Au-PNM). The GO-Au-PNM nanostructures were characterized by spectroscopic techniques and atomic force microscopy. They exhibited photothermal conversion effects at various wavelengths, lower critical solution temperature (LCST) behaviour, and curcumin (Curc) loading capacity. The formation of GO-Au-PNM/Curc adducts and photothermally controlled drug release, triggered by red-light excitation (680 nm), were demonstrated using spectroscopic techniques. Drug-polymer interaction and drug-release mechanism were well supported by modelling simulation calculations. The cellular uptake of GO-Au-PNM/Curc was imaged by confocal laser scanning microscopy. In vitro experiments revealed the excellent biocompatibility of the GO-Au-PNM that did not affect the viability of human cells.


Assuntos
Curcumina , Grafite , Hipertermia Induzida , Nanopartículas Metálicas , Humanos , Polímeros/química , Ouro , Linhagem Celular Tumoral , Luz Vermelha , Liberação Controlada de Fármacos , Hipertermia Induzida/métodos , Curcumina/química
4.
ACS Appl Mater Interfaces ; 14(2): 2551-2563, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985246

RESUMO

Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carbono/farmacologia , Nanopartículas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/química , Carbono/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Teste de Materiais , Estrutura Molecular , Imagem Óptica , Espécies Reativas de Oxigênio/metabolismo
5.
Appl Environ Microbiol ; 88(1): e0188121, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669446

RESUMO

Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particular, a total of 166 proteins involved in cell metabolism/differentiation, molecular processing/transport, and stress response were identified in MVs, the latter functional class also being important for bacterial morpho-physiological differentiation. A subset of these proteins was protected from degradation following treatment of MVs with proteinase K, indicating their localization inside the vesicles. Moreover, S. coelicolor MVs contained an array of metabolites, such as antibiotics, vitamins, amino acids, and components of carbon metabolism. In conclusion, this analysis provides detailed information on S. coelicolor MVs under basal conditions and on their corresponding content, which may be useful in the near future to elucidate vesicle biogenesis and functions. IMPORTANCE Streptomycetes are widely distributed in nature and characterized by a complex life cycle that involves morphological differentiation. They are very relevant in industry because they produce about half of all clinically used antibiotics, as well as other important pharmaceutical products of natural origin. Streptomyces coelicolor is a model organism for the study of bacterial differentiation and bioactive molecule production. S. coelicolor produces extracellular vesicles that carry many molecules, such as proteins and metabolites, including antibiotics. The elucidation of S. coelicolor extracellular vesicle cargo will help us to understand different aspects of streptomycete physiology, such as cell communication during differentiation and response to environmental stimuli. Moreover, the capability of these vesicles for carrying different kinds of biomolecules opens up new biotechnological possibilities related to drug delivery. Indeed, decoding the molecular mechanisms involved in cargo selection may lead to the customization of extracellular vesicle content.


Assuntos
Streptomyces coelicolor , Streptomyces , Antibacterianos , Proteínas de Bactérias/genética , Proteínas , Streptomyces coelicolor/genética
6.
ACS Appl Mater Interfaces ; 13(41): 49232-49241, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609127

RESUMO

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favorable energy level alignment within these complexes, suggesting a photoinduced electron transfer from dots to nanotubes, which is a process of high functional interest. Femtosecond transient absorption confirms indeed an ultrafast (<100 fs) electron transfer independent of nanotubes being conductive or semiconductive in nature, followed by a much slower back electron transfer (≈60 ps) from the nanotube to the carbon dots. The high degree of charge separation and delocalization achieved in these nanohybrids entails significant photocatalytic properties, as we demonstrate by the reduction of silver ions in solution. The results are very promising in view of using these "all-carbon" nanohybrids as efficient light harvesters for applications in artificial photocatalysis and photosynthesis.

7.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065804

RESUMO

We report a study of carbon dots produced via bottom-up and top-down routes, carried out through a multi-technique approach based on steady-state fluorescence and absorption, time-resolved fluorescence spectroscopy, Raman spectroscopy, infrared spectroscopy, and atomic force microscopy. Our study focuses on a side-to-side comparison of the fundamental structural and optical properties of the two families of fluorescent nanoparticles, and on their interaction pathways with mercury ions, which we use as a probe of surface emissive chromophores. Comparison between the two families of carbon dots, and between carbon dots subjected to different functionalization procedures, readily identifies a few key structural and optical properties apparently common to all types of carbon dots, but also highlights some critical differences in the optical response and in the microscopic mechanism responsible of the fluorescence. The results also provide suggestions on the most likely interaction sites of mercury ions at the surface of carbon dots and reveal details on mercury-induced fluorescence quenching that can be practically exploited to optimize sensing applications of carbon dots.

8.
Materials (Basel) ; 13(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142826

RESUMO

Carbon nanodots (CDs) have recently attracted attention in the field of nanomedicine because of the biocompatibility, cost-effective nature, high specific surface, good near infrared (NIR) photothermal conversion into heat and tunable fluorescence properties, which have paved the way toward incorporating use of CDs into innovative anticancer theranostic platforms. However, a reliable synthesis of CDs with established and controlled physiochemical proprieties is precluded owing to the lack of full manipulation of thermodynamic parameters during the synthesis, thus limiting their use in real world medical applications. Herein, we developed a robust solvothermal protocol which allow fine controlling of temperature and pressure in order to obtain CDs with tunable properties. We obtained different CDs by modulating the operating pressure (from 8 to 18.5 bar) during the solvothermal decomposition of urea and citric acid in N,N-dimethylformamide at fixed composition. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and fluorescence spectroscopy were used to assess the role of pressure in influencing size, optical and surface properties of the obtained CDs. While preliminary biological and anticancer performance of CDs was established on the MDA-MB-231 cell line, used as triple negative breast cancer model. Our results indicate that pressure impinge on the formation of carbon nanoparticles under solvothermal conditions and impart desired optical, size distribution, surface functionalization and anticancer properties in a facile way. However, we have highlighted that a strategic surface engineering of these CDs is needed to limit the adsorption of corona proteins and also to increase the average surface diameter, avoiding a rapid renal clearance and improving their therapeutic efficacy in vivo.

9.
Chempluschem ; 85(11): 2455-2464, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33021350

RESUMO

A novel bithiophene-fulleropyrrolidine bisadducts system (bis-Th2PC60 ) was synthesized and electropolymerized by chronoamperometry onto flexible ITO/PET substrates. The resulting semitransparent thin film was characterized by XPS, FT-IR, cyclic voltammetry and optical techniques, confirming the good outcome of the electropolymerization process. AFM investigations permitted to highlight an inherent disordered granular morphology, in which the grain-to-grain separation depends upon the application of bending. The electrical resistance of the thin film was characterized as a function of bending (in the range 0°-90°), showing promising responsivity to low bending angles (10°-30°). The ΔR/R0 variations turn out to be 8 %,16 % and 20 % for bending angles equal to 10°, 20° and 30°, respectively. This study represents a first step towards the understanding of piezoresistive properties in electropolymerized fullerenes-based thin films, opening up applications as bending sensor.

10.
Pharmaceutics ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113976

RESUMO

Theranostic systems have attracted considerable attention for their multifunctional approach to cancer. Among these, carbon nanodots (CDs) emerged as luminescent nanomaterials due to their exceptional chemical properties, synthetic ease, biocompatibility, and for their photothermal and fluorescent properties useful in cancer photothermal therapy. However, premature renal excretion due to the small size of these particles limits their biomedical application. To overcome these limitations, here, hybrid poly(lactic-co-glycolic acid) (PLGA-CDs) nanoparticles with suitable size distribution and stability have been developed. CDs were decisive in the preparation of polymeric nanoparticles, not only conferring them photothermal and fluorescent properties, needed in theranostics, but also having a strategic role in the stabilization of the system in aqueous media. In fact, CDs provide stable PLGA-based nanoparticles in aqueous media and sufficient cryoprotection in combination with 1% PVP. While PLGA nanoparticles required at least 5% of sucrose. Comparing nanosystems with different CDs content, it is also evident how these positively impinge on the loading and release of the drug, favoring high drug loading (~4.5%) and a sustained drug release over 48 h. The therapeutic and imaging potentials were finally confirmed through in vitro studies on a breast cancer cell line (MDA-MB-231) using fluorescence imaging and the MTS cell viability assay.

11.
Nanomaterials (Basel) ; 10(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183471

RESUMO

Graphene (Gr)-a single layer of two-dimensional sp2 carbon atoms-and Carbon Dots (CDs)-a novel class of carbon nanoparticles-are two outstanding nanomaterials, renowned for their peculiar properties: Gr for its excellent charge-transport, and CDs for their impressive emission properties. Such features, coupled with a strong sensitivity to the environment, originate the interest in bringing together these two nanomaterials in order to combine their complementary properties. In this work, the investigation of a solid-phase composite of CDs deposited on Gr is reported. The CD emission efficiency is reduced by the contact of Gr. At the same time, the Raman analysis of Gr demonstrates the increase of Fermi energy when it is in contact with CDs under certain conditions. The interaction between CDs and Gr is modeled in terms of an electron-transfer from photoexcited CDs to Gr, wherein an electron is first transferred from the carbon core to the surface states of CDs, and from there to Gr. There, the accumulated electrons determine a dynamical n-doping effect modulated by photoexcitation. The CD-graphene interaction unveiled herein is a step forward in the understanding of the mutual influence between carbon-based nanomaterials, with potential prospects in light conversion applications.

12.
Angew Chem Int Ed Engl ; 58(34): 11747-11751, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31211486

RESUMO

Metal-organic frameworks (MOFs) are a class of porous materials that show promise in the removal of toxic industrial chemicals (TICs) from contaminated airstreams, though their development for this application has so far been hindered by issues of water stability and the wide availability and low cost of traditionally used activated carbons. Here a series of three MOF-activated carbon composite materials with different MOF to carbon ratios are prepared by growing STAM-17-OEt crystals inside the commercially available BPL activated carbon. The composite materials display excellent water stability and increased uptake of ammonia gas when compared to unimpregnated carbon. Such properties make these composites very promising in the fields of air purification and personal protective equipment.

13.
ACS Appl Mater Interfaces ; 11(22): 19854-19866, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31088077

RESUMO

Very recent red-emissive carbon nanodots (CDs) have shown potential as near-infrared converting tools to produce local heat useful in cancer theranostics. Besides, CDs seem very appealing for clinical applications combining hyperthermia, imaging, and drug delivery in a single platform capable of selectively targeting cancer cells. However, CDs still suffer from dramatic dot-to-dot variability issues such that a rational design of their structural, optical, and chemical characteristics for medical applications has been impossible so far. Herein, we report for the first time a simple and highly controllable layer-by-layer synthesis of biotin-decorated CDs with monodisperse size distribution, well established polymeric shell thickness, and degree of surface functionalization, endowed with strong red luminescence and the ability to convert NIR light into heat. These CDs, henceforth named CDs-PEG-BT, consist of a carbonaceous core passivated with biotin-terminated PEG2000 chains, which we demonstrate as active targeting groups to recognize cancer cells. The CDs-PEG-BT are designed to efficiently incorporate a high amount of anticancer drugs such as irinotecan (16-28%) and to act as NIR-activated nanoheaters capable of triggering local hyperthermia and massive drug release inside tumors, thus provoking sudden and efficient tumor death. The potential of the irinotecan-loaded CDs-PEG-BT (CDs-PEG-BT@IT) in fluorescence imaging was studied on 2D cultures and on complex 3D spheroids mimicking in vivo tumor architectures, showing their capability of selectively entering cancer cells through biotin receptors overexpressed in cell membranes. The efficient anticancer effect of these CDs was thoroughly assessed on multicellular 3D spheroids and patient organoids (tumor-on-a-dish preclinical models) to predict the drug response in humans in view of personalized medicine applications. CDs-PEG-BT@IT have a smart combination of properties, which pave the way to their real-world use as anticancer theranostic agents for image-guided photothermal applications.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Biotina/química , Carbono/química , Nanoestruturas/química , Medicina de Precisão/métodos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Células MCF-7
14.
Nanoscale ; 10(32): 15317-15323, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30069566

RESUMO

Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor quantum dots can be applied to any type of CDs. We used femtosecond optical hole burning to address the excited-state properties of a family of CDs with the specific structure of ß-C3N4. The experiments provide compelling evidence of the dramatic effects of structural heterogeneity on the optical spectra, and reveal the remarkably simple pattern of the electronic transitions of these CDs, normally obscured by disorder. Moreover, the data conclusively clarify the different effects of the nanometric size and of the disordered surface structure on the fluorescence tunability, ruling out for these CDs any quantum confinement effect comparable to semiconductor quantum dots.

15.
J Phys Chem B ; 122(12): 3101-3112, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29488762

RESUMO

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/hydrophilicity, structures, and morphologies of a superstructure named spherulite, observed in connection to Alzheimer's disease. Depending on the presence of ethanol, such structures can incorporate fluorescent molecules with different physicochemical features and span a range of mechanical properties and morphologies. A theoretical model providing a thorough comprehension of the experimental data is developed, highlighting a direct connection between the intimate physical protein-protein interactions, the growth, and the properties of the self-assembled superstructures. Our findings indicate structural variability as a general property for amyloid-like aggregates and not limited to fibrils. This knowledge is pivotal not only for developing effective strategies against pathological amyloids but also for providing a platform to design highly tunable biomaterials, alternative to elongated protein fibrils.


Assuntos
Amiloide/síntese química , Etanol/química , Insulinas/síntese química , Amiloide/química , Dicroísmo Circular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Insulinas/química , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Difração de Nêutrons , Imagem Óptica , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Beilstein J Nanotechnol ; 8: 418-424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326231

RESUMO

The effects of temperature and atmosphere (air and O2) on the doping of monolayers of graphene (Gr) on SiO2 and Si substrates, and on the doping of MoS2 multilayer flakes transferred on the same substrates have been investigated. The investigations were carried out by in situ micro-Raman spectroscopy during thermal treatments up to 430 °C, and by atomic force microscopy (AFM). The spectral positions of the G and 2D Raman bands of Gr undergo only minor changes during treatment, while their amplitude and full width at half maximum (FWHM) vary as a function of the temperature and the used atmosphere. The thermal treatments in oxygen atmosphere show, in addition to a thermal effect, an effect attributable to a p-type doping through oxygen. The thermal broadening of the line shape, found during thermal treatments by in situ Raman measurements, can be related to thermal phonon effects. The absence of a band shift results from the balance between a red shift due to thermal effects and a blue shift induced by doping. This shows the potential of in situ measurements to follow the doping kinetics. The treatment of MoS2 in O2 has evidenced a progressive erosion of the flakes without relevant spectral changes in their central zone during in situ measurements. The formation of MoO3 on the edges of the flakes is observed indicative of the oxygen-activated transformation.

17.
Biophys Chem ; 216: 23-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27372900

RESUMO

The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-photon microscopy, small-angle X-ray scattering and atomic force microscopy, we report evidences on how the stability of αSN amyloid-like aggregates can be altered by changing solution conditions. We show that amyloid-like aggregate formation can be induced at high temperature in the presence of trifluoroethanol (TFE). Moreover, sudden disassembly or further structural reorganisation toward higher hierarchical species can be induced by varying TFE concentration. Our results may contribute in deciphering fundamental mechanisms and interactions underlying supramolecular clustering/dissolution of αSN oligomers in cells.


Assuntos
Agregados Proteicos/efeitos dos fármacos , Trifluoretanol/farmacologia , alfa-Sinucleína/química , Amiloide/química , Humanos , Estabilidade Proteica , Análise Espectral , Temperatura , alfa-Sinucleína/efeitos dos fármacos
18.
J Phys Chem A ; 120(31): 6155-69, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27405003

RESUMO

EPR line shape simulations of CH3/SiO2 clathrates and comparison to CH3/N2O and CH3/SiO2 experiments reveal the motional conditions of the CH3 radical up to the unusual regime of its stability, the high-temperature diffusional regime, at 300 K. In the low-temperature region, the CH3 in clathrates is found to rotate around the in-plane axes even at as low temperatures as 3.8 K. However, nonrotating methyls performing only libration about the C2-axes as well as around the C3-axis are also found, proving the existence of special sites in the clathrate voids that begin to accumulate a significant fraction of methyl radicals at temperatures below approximately 7 K. A distinctive feature in the spectrum anisotropy and line width temperature profiles is found nearby 25 K, which is interpreted as the radical physisorption inside the voids that occurs with the sample temperature lowering. The unusual increase of the CH3/SiO2 clathrate EPR spectral width with temperature over approximately 120 K has its origin in repeated angular momentum vector alterations due to frequent collisions with the clathrate void walls between periodical free rotation periods. This relaxation mechanism resembles to spin-rotation interaction known only for small molecular species in nonviscous fluids but unknown earlier for methyl hosted in solids.

19.
Phys Chem Chem Phys ; 18(24): 16237-44, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27251452

RESUMO

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, µRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm(-1) associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications.

20.
Phys Chem Chem Phys ; 16(40): 22028-34, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25205259

RESUMO

We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully characterizing the spectroscopic features of this structured emission, we determine its vibronic properties and clarify the different origins with respect to the blue luminescent defect.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Microscopia de Força Atômica , Tamanho da Partícula , Porosidade , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Análise Espectral Raman , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA