Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ 2D Mater Appl ; 7(1): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665486

RESUMO

The development of high-precision large-area optical coatings and devices comprising low-dimensional materials hinges on scalable solution-based manufacturability with control over exfoliation procedure-dependent effects. As such, it is critical to understand the influence of technique-induced transition metal dichalcogenide (TMDC) optical properties that impact the design, performance, and integration of advanced optical coatings and devices. Here, we examine the optical properties of semiconducting MoS2 films from the exfoliation formulations of four prominent approaches: solvent-mediated exfoliation, chemical exfoliation with phase reconversion, redox exfoliation, and native redox exfoliation. The resulting MoS2 films exhibit distinct refractive indices (n), extinction coefficients (k), dielectric functions (ε1 and ε2), and absorption coefficients (α). For example, a large index contrast of Δn ≈ 2.3 is observed. These exfoliation procedures and related chemistries produce different exfoliated flake dimensions, chemical impurities, carrier doping, and lattice strain that influence the resulting optical properties. First-principles calculations further confirm the impact of lattice defects and doping characteristics on MoS2 optical properties. Overall, incomplete phase reconfiguration (from 1T to mixed crystalline 2H and amorphous phases), lattice vacancies, intraflake strain, and Mo oxidation largely contribute to the observed differences in the reported MoS2 optical properties. These findings highlight the need for controlled technique-induced effects as well as the opportunity for continued development of, and improvement to, liquid phase exfoliation methodologies. Such chemical and processing-induced effects present compelling routes to engineer exfoliated TMDC optical properties toward the development of next-generation high-performance mirrors, narrow bandpass filters, and wavelength-tailored absorbers.

2.
J Phys Chem Lett ; 13(25): 5808-5814, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726902

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) exhibit compelling dimension-dependent exciton-dominated optical behavior influenced by thickness and lateral quantum confinement effects. Thickness quantum confinement effects have been observed; however, experimental optical property assessment of nanoscale lateral dimension monolayer TMDCs is lacking. Here, we employ ex situ spectroscopic ellipsometry to evaluate laterally coalescing monolayer metalorganic chemical vapor deposited MoS2. A multisample analysis is used to constrain Bruggeman and Maxwell-Garnett effective medium approximations and the effective dielectric functions are derived for laterally coalesced and uncoalesced MoS2 films (∼10-94% surface coverage for ∼10-140 nm lateral grain sizes). This analysis demonstrates the ability to probe MoS2 optical exciton behavior at growth-relevant grain sizes in relation to chemical vapor nucleation density, ripening, and lateral growth conditions. Our analysis is pertinent toward expected in situ epitaxial 2D TMDC film growth metrology to enable the facile development of monolayer films with targeted process-dependent optical properties.

3.
Appl Opt ; 60(25): G232-G242, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613214

RESUMO

Although there has been progress in studying the electronic and optical properties of monolayer and near-monolayer (two-dimensional, 2D) MoS2 upon adatom adsorption and intercalation, understanding the underlying atomic-level behavior is lacking, particularly as related to the optical response. Alkali atom intercalation in 2D transition metal dichalcogenides (TMDs) is relevant to chemical exfoliation methods that are expected to enable large scale production. In this work, focusing on prototypical 2D MoS2, the adsorption and intercalation of Li, Na, K, and Ca adatoms were investigated for the 2H, 1T, and 1T' phases of the TMD by the first principles density functional theory in comparison to experimental characterization of 2H and 1T 2D MoS2 films. Our electronic structure calculations demonstrate significant charge transfer, influencing work function reductions of 1-1.5 eV. Furthermore, electrical conductivity calculations confirm the semiconducting versus metallic behavior. Calculations of the optical spectra, including excitonic effects using a many-body theoretical approach, indicate enhancement of the optical transmission upon phase change. Encouragingly, this is corroborated, in part, by the experimental measurements for the 2H and 1T phases having semiconducting and metallic behavior, respectively, thus motivating further experimental exploration. Overall, our calculations emphasize the potential impact of synthesis-relevant adatom incorporation in 2D MoS2 on the electronic and optical responses that comprise important considerations toward the development of devices such as photodetectors or the miniaturization of electroabsorption modulator components.

4.
Int J Biol Macromol ; 181: 313-321, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33766601

RESUMO

This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (Fe3O4) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@Fe3O4 multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based Fe3O4 nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial Fe3O4 mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and morphological characterization. Results showed that nanocomposites fabricated above 5:1 lignin:Fe3O4 had the highest lignin coverage and content (>20%), possessed superparamagnetic properties (Ms ≈ 45,000 A·m2/kg2); had a negative surface charge (-30 mV), and formed multicore nanostructures (DH ≈ 150 nm). The multicore lignin@Fe3O4 nanocomposites allowed rapid magnetically induced separations from suspension. After 5 min exposure to a rare-earth neodymium magnet (1.27 mm × 1.27 mm × 5.08 mm), lignin@Fe3O4 nanocomposites exhibited a maximum methylene blue removal efficiency of 74.1% ± 7.1%. These nanocomposites have potential in magnetically induced separations to remove organic dyes, heavy metals, or other lignin adsorbates.


Assuntos
Precipitação Química , Compostos Férricos/química , Lignina/química , Nanocompostos/química , Coloides/química , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Nanocompostos/ultraestrutura , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier , Suspensões , Difração de Raios X
5.
ACS Omega ; 4(12): 15269-15279, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31552374

RESUMO

Gold nanoparticles (AuNPs) bound with biomolecules have emerged as suitable biosensors exploiting unique surface chemistries and optical properties. Many efforts have focused on antibody bioconjugation to AuNPs resulting in a sensitive bioconjugate to detect specific types of bacteria. Unfortunately, bacteria thrive under various harsh environments, and an understanding of bioconjugate stability is needed. Here, we show a method for optimizing Listeria monocytogenes polyclonal antibodies bioconjugation mechanisms to AuNPs via covalent binding at different pH values, from 2 to 11, and 2-(N-morpholino)ethanesulfonic acid (MES), 3-(N-morpholino)propanesulfonic acid, NaOH, HCl conditions. By fitting Lorentz curves to the amide I and II regions, we analyze the stability of the antibody secondary structure. This shows an increase in the apparent breakdown of the antibody secondary structure during bioconjugation as pH decreases from 7.9 to 2. We find variable adsorption efficiency, measured as the percentage of antibody adsorbed to the AuNP surface, from 17 to 27% as pH increases from 2 to 6 before decreasing to 8 and 13% at pH 7.9 and 11, respectively. Transmission electron microscopy (TEM) analysis reveals discrepancies between size and morphological changes due to the corona layer assembly from antibody binding to single nanoparticles versus aggregation or cluster self-assembly into large aggregates. The corona layer formation size increases from 3.9 to 5.1 nm from pH 2 to 6, at pH 7.9, there is incomplete corona formation, whereas at pH 11, there is a corona layer formed of 6.4 nm. These results indicate that the covalent binding process was more efficient at lower pH values; however, aggregation and deactivation of the antibodies were observed. We demonstrate that optimum bioconjugation condition was determined at pH 6 and MES buffer-type by indicators of covalent bonding and stability of the antibody secondary structure using Fourier transform-infrared, the morphological characteristics and corona layer formation using TEM, and low wavelength shifts of ultraviolet-visible after bioconjugation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA