Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(7): 77007, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046251

RESUMO

BACKGROUND: Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish. OBJECTIVES: The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish. METHODS: Swimming behavior was assessed in 5-d postfertilization (dpf) larvae following developmental (1-4 dpf) or acute (5 dpf) exposure to 0.43-7.86µM PFOS, 7.87-120µM PFHxS, or 0.4% dimethyl sulfoxide (DMSO). After developmental exposure and chemical washout at 4 dpf, behavior was also assessed at 5-8 dpf. RNA sequencing was used to identify differences in global gene expression to perform transcriptomic benchmark concentration-response (BMCT) modeling, and predict upstream regulators in PFOS- or PFHxS-exposed larvae. CRISPR/Cas9-based gene editing was used to knockdown peroxisome proliferator-activated receptors (ppars) pparaa/ab, pparda/db, or pparg at day 0. Knockdown crispants were exposed to 7.86µM PFOS or 0.4% DMSO from 1-4 dpf and behavior was assessed at 5 dpf. Coexposure with the ppard antagonist GSK3787 and PFOS was also performed. RESULTS: Transient dark-phase hyperactivity occurred following developmental or acute exposure to PFOS or PFHxS, relative to the DMSO control. In contrast, visual startle response (VSR) hyperactivity only occurred following developmental exposure and was irreversible up to 8 dpf. Similar global transcriptomic profiles, BMCT estimates, and enriched functions were observed in PFOS- and PFHxS-exposed larvae, and ppars were identified as putative upstream regulators. Knockdown of pparda/db, but not pparaa/ab or pparg, blunted PFOS-dependent VSR hyperactivity to control levels. This finding was confirmed via antagonism of ppard in PFOS-exposed larvae. DISCUSSION: This work identifies a novel adverse outcome pathway for VSR hyperactivity in larval zebrafish. We demonstrate that developmental, but not acute, exposure to PFOS triggered persistent VSR hyperactivity that required ppard function. https://doi.org/10.1289/EHP13667.


Assuntos
Fluorocarbonos , Larva , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Fluorocarbonos/toxicidade , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Receptores Ativados por Proliferador de Peroxissomo/genética , Ácidos Alcanossulfônicos/toxicidade , Reflexo de Sobressalto/efeitos dos fármacos , Ácidos Sulfônicos/toxicidade , Natação
2.
Sci Data ; 11(1): 60, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200014

RESUMO

Chemicals in the aquatic environment can be harmful to organisms and ecosystems. Knowledge on effect concentrations as well as on mechanisms and modes of interaction with biological molecules and signaling pathways is necessary to perform chemical risk assessment and identify toxic compounds. To this end, we developed criteria and a pipeline for harvesting and summarizing effect concentrations from the US ECOTOX database for the three aquatic species groups algae, crustaceans, and fish and researched the modes of action of more than 3,300 environmentally relevant chemicals in literature and databases. We provide a curated dataset ready to be used for risk assessment based on monitoring data and the first comprehensive collection and categorization of modes of action of environmental chemicals. Authorities, regulators, and scientists can use this data for the grouping of chemicals, the establishment of meaningful assessment groups, and the development of in vitro and in silico approaches for chemical testing and assessment.

3.
Arch Toxicol ; 98(2): 537-549, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38129683

RESUMO

Inhibition of angiogenesis is an important mode of action for the teratogenic effect of chemicals and drugs. There is a gap in the availability of simple, experimental screening models for the detection of angiogenesis inhibition. The zebrafish embryo represents an alternative test system which offers the complexity of developmental differentiation of an entire organism while allowing for small-scale and high-throughput screening. Here we present a novel automated imaging-based method to detect the inhibition of angiogenesis in early life stage zebrafish. Video subtraction was used to identify the location and number of functional intersegmental vessels according to the detection of moving blood cells. By exposing embryos to multiple tyrosine kinase inhibitors including SU4312, SU5416, Sorafenib, or PTK787, we confirmed that this method can detect concentration-dependent inhibition of angiogenesis. Parallel assessment of arterial and venal aorta ruled out a potential bias by impaired heart or blood cell development. In contrast, the histone deacetylase inhibitor valproic acid did not affect ISV formation supporting the specificity of the angiogenic effects. The new test method showed higher sensitivity, i.e. lower effect concentrations, relative to a fluorescent reporter gene strain (Tg(KDR:EGFP)) exposed to the same tyrosine kinase inhibitors indicating that functional effects due to altered tubulogenesis or blood transport can be detected before structural changes of the endothelium are visible by fluorescence imaging. Comparison of exposure windows indicated higher specificity for angiogenesis when exposure started at later embryonic stages (24 h post-fertilization). One of the test compounds was showing particularly high specificity for angiogenesis effects (SU4312) and was, therefore, suggested as a model compound for the identification of molecular markers of angiogenic disruption. Our findings establish video imaging in wild-type strains as viable, non-invasive, high-throughput method for the detection of chemical-induced angiogenic disruption in zebrafish embryos.


Assuntos
Peixe-Zebra , Animais , Animais Geneticamente Modificados , Embrião não Mamífero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA