Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(3): 707-725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126155

RESUMO

A robust body of work has demonstrated that a reduction in cAMP-specific 3',5'-cyclic phosphodiesterase 4D isoform 7 (PDE4D7) is linked with negative prostate cancer outcomes; however, the exact molecular mechanism that underpins this relationship is unknown. Epigenetic profiling has shown that the PDE4D gene can be hyper-methylated in transmembrane serine protease 2 (TMPRSS2)-ETS transcriptional regulator ERG (ERG) gene-fusion-positive prostate cancer (PCa) tumours, and this inhibits messenger RNA (mRNA) expression, leading to a paucity of cellular PDE4D7 protein. In an attempt to understand how the resulting aberrant cAMP signalling drives PCa growth, we immunopurified PDE4D7 and identified binding proteins by mass spectrometry. We used peptide array technology and proximity ligation assay to confirm binding between PDE4D7 and ATP-dependent RNA helicase A (DHX9), and in the design of a novel cell-permeable disruptor peptide that mimics the DHX9-binding region on PDE4D7. We discovered that PDE4D7 forms a signalling complex with the DExD/H-box RNA helicase DHX9. Importantly, disruption of the PDE4D7-DHX9 complex reduced proliferation of LNCaP cells, suggesting the complex is pro-tumorigenic. Additionally, we have identified a novel protein kinase A (PKA) phosphorylation site on DHX9 that is regulated by PDE4D7 association. In summary, we report the existence of a newly identified PDE4D7-DHX9 signalling complex that may be crucial in PCa pathogenesis and could represent a potential therapeutic target.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Neoplasias da Próstata , Masculino , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/metabolismo , Peptídeos , RNA Helicases , Proteínas de Neoplasias/metabolismo , RNA Helicases DEAD-box/genética
2.
FEBS J ; 289(20): 6267-6285, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35633070

RESUMO

Post-translational modification of the myofilament protein troponin I by phosphorylation is known to trigger functional changes that support enhanced contraction and relaxation of the heart. We report for the first time that human troponin I can also be modified by SUMOylation at lysine 177. Functionally, TnI SUMOylation is not a factor in the development of passive and maximal force generation in response to calcium, however this modification seems to act indirectly by preventing SUMOylation of other myofilament proteins to alter calcium sensitivity and cooperativity of myofilaments. Utilising a novel, custom SUMO site-specific antibody that recognises only the SUMOylated form of troponin I, we verify that this modification occurs in human heart and that it is upregulated during disease.


Assuntos
Cálcio , Troponina I , Cálcio/metabolismo , Humanos , Lisina/metabolismo , Miofibrilas/metabolismo , Fosforilação , Sumoilação , Troponina I/genética , Troponina I/metabolismo
3.
Methods Mol Biol ; 1957: 121-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919351

RESUMO

The many functions of ß-arrestin proteins in the desensitization of G-protein-coupled receptors have been well characterized; however, the discovery that this scaffold protein could actually recruit phosphodiesterases (PDEs) to the site of cAMP synthesis changed the way researchers thought about the static nature of precisely localized cAMP hydrolysis by anchored PDEs. Before this discovery, the compartmentalization of cAMP gradients formed by the activation of specific receptors was generally understood to be underpinned by highly localized pools of specific PDEs that were anchored by large static anchors such as A-kinase-anchoring proteins (AKAPs). Such anchors acted to position cAMP effector proteins such as protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC) in places that would allow cAMP concentrations to breach their activation threshold only when a specific receptor activation occurred. In this arrangement PDEs acted as local "sinks" for cAMP and this enforced receptor-specific function by allowing the correct activation of a distinct pool of cAMP effectors in precise localizations. The discovery that ß-arrestin could shuttle cAMP hydrolyzing activity to the membrane shortly after receptor activation added to the complexity of this process by restricting cAMP diffusion into the cell interior for some receptors. This chapter describes the methods used to identify, confirm, and test the function of PDE-ß-arrestin complexes.


Assuntos
Arrestinas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Arrestinas/química , Sítios de Ligação , Células HEK293 , Humanos , Mutação/genética , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA