Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 8: 587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850627

RESUMO

The enzymatic conversion of lignocellulosic material to sugars can provide a carbon source for the production of energy (fuels) and a wide range of renewable products. However, the efficiency of this conversion is impaired due to product (sugar) inhibition. Even though several studies investigate how to overcome this challenge, concepts on the process to conduct the hydrolysis are still scarce in literature. Aqueous two-phase systems (ATPS) can be applied to design an extractive reaction due to their capacity to partition solutes to different phases in such a system. This work presents strategies on how to conduct extractive enzymatic hydrolysis in ATPS and how to explore the experimental results in order to design a feasible process. While only a limited number of ATPS was explored, the methods and strategies described could easily be applied to any further ATPS to be explored. We studied two promising ATPS as a subset of a previously high throughput screened large set of ATPS, providing two configurations of processes having the reaction in either the top phase or in the bottom phase. Enzymatic hydrolysis in these ATPS was performed to evaluate the partitioning of the substrate and the influence of solute partitioning on conversion. Because ATPS are able to partition inhibitors (sugar) between the phases, the conversion rate can be maintained. However, phase forming components should be selected to preserve the enzymatic activity. The experimental results presented here contribute to a feasible ATPS-based conceptual process design for the enzymatic conversion of lignocellulosic material.

2.
Bioresour Technol ; 280: 37-50, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30754004

RESUMO

Aqueous two-phase systems (ATPS) can be applied to enzymatic reactions that are affected by product inhibition. In the biorefinery context, sugars inhibit the cellulolytic enzymes in charge of converting the biomass. Here, we present a strategy to select an ATPS (formed by polymer and salt) that can separate sugar and enzymes. This automated and miniaturized method is able to determine phase diagrams and partition coefficients of solutes in these. Tailored approaches to quantify the solutes are presented, taking into account the limitations of techniques that can be applied with ATPS due to the interference of phase forming components with the analytics. The developed high-throughput (HT) platform identifies suitable phase forming components and the tie line of operation. This fast methodology proposes to screen up to six different polymer-salt systems in eight days and supplies the results to understand the influence of sugar and protein concentrations on their partition coefficients.


Assuntos
Robótica , Polímeros/química , Cloreto de Sódio/química , Soluções , Água
3.
Bioresour Technol ; 187: 173-181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25846188

RESUMO

The aim of this work was to study cocktail supplementation for sugar cane bagasse hydrolysis, where the enzymes were provided from both commercial source and microorganism cultivation (Trichoderma reesei and genetically modified Escherichia coli), followed by purification. Experimental simplex lattice mixture design was performed to optimize the enzymatic proportion. The response was evaluated through hydrolysis microassays validated here. The optimized enzyme mixture, comprised of T. reesei fraction (80%), endoglucanase (10%) and ß-glucosidase (10%), converted, theoretically, 72% of cellulose present in hydrothermally pretreated bagasse, whereas commercial Celluclast 1.5L converts 49.11%±0.49. Thus, a rational enzyme mixture designed by using synergism concept and statistical analysis was capable of improving biomass saccharification.


Assuntos
Carboidratos/síntese química , Celulose/química , Hidrolases/química , Lignina/química , Saccharum/química , Trichoderma/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Hidrólise , Complexos Multienzimáticos/química , Proteínas Recombinantes/metabolismo , Trichoderma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA