Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(10)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39452359

RESUMO

The cochineal insect Dactylopius coccus Costa (Hemiptera) has cultural and economic value because it produces carminic acid that is used commercially. In this study, distinct fungi were cultured from dissected tissue and identified as Penicillium, Coniochaeta, Arthrinium, Cladosporium, Microascus, Aspergillus, and Periconia. Fungi were microscopically observed inside cochineals in the gut, fat body, and ovaries. Since cochineals spend their lives attached to cactus leaves and use the sap as feed, they can obtain fungi from cacti plants. Indeed, we obtained Penicillium, Aspergillus, and Cladosporium fungi from cacti that were identical to those inside cochineals, supporting their plant origin. Fungi could be responsible for the degrading activities in the insect guts, since cellulase, pectinase, and amylase enzymatic activities in insect guts decreased in fungicide-treated cochineals. Our findings set the basis for the further study of the interactions between insects, fungi, and their host plants.

2.
Syst Appl Microbiol ; 47(5): 126540, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39068732

RESUMO

We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.


Assuntos
Sistemas CRISPR-Cas , Genoma Bacteriano , Hemípteros , Simbiose , Hemípteros/microbiologia , Hemípteros/virologia , Animais , Genoma Bacteriano/genética , Genômica , Filogenia , Fixação de Nitrogênio
3.
Artigo em Inglês | MEDLINE | ID: mdl-37754346

RESUMO

Four Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped, motile endophytic bacterial strains, designated NM3R9T, NE1TT3, NE2TL11 and NE2HP2T, were isolated from the inner tissues (leaf and stem) of Sphaeralcea angustifolia and roots of Prosopis laevigata. They were characterized using a polyphasic approach, which revealed that they represent two novel Microbacterium species. Phylogenetic analysis based on 16S rRNA gene sequencing showed that the species closest to NE2HP2T was Microbacterium arborescens DSM 20754T (99.6 %) and that closest to NM3R9T, NE2TL11 and NE2TT3 was Microbacterium oleivorans NBRC 103075T (97.4 %). The whole-genome average nucleotide identity value between strain NM3R9T and Microbacterium imperiale DSM 20530T was 90.91 %, and that between strain NE2HP2T and M. arborecens DSM 20754T was 91.03 %. Digital DNA-DNA hybridization showed values of less than 70 % with the type strains of related species. The polar lipids present in both strains included diphosphatidylglycerol, phosphatidylglycerol, glycolipids and unidentified lipids, whereas the major fatty acids included anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and C16 : 0. Whole-cell sugars included mannose, rhamnose and galactose. Strains NM3R9T and NE2HP2T showed physiological characteristics different from those present in closely related Microbacterium species. According to the taxonomic analysis, both strains belong to two novel species. The name Microbacterium plantarum sp. nov. is proposed for strain NE2HP2T (=LMG 30875T=CCBAU 101117T) and Microbacterium thalli sp. nov. for strains NM3R9T (=LMG 30873T=CCBAU 101116T), NE1TT3 (=CCBAU 101114) and NE2TL11 (=CCBAU 101115).


Assuntos
Actinomycetales , Prosopis , Ácidos Graxos/química , Fosfolipídeos/análise , Prosopis/genética , Microbacterium , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Vitamina K 2
4.
Plants (Basel) ; 12(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36987016

RESUMO

Compared to agrochemicals, bioinoculants based on plant microbiomes are a sustainable option for increasing crop yields and soil fertility. From the Mexican maize landrace "Raza cónico" (red and blue varieties), we identified yeasts and evaluated in vitro their ability to promote plant growth. Auxin production was detected from yeast isolates and confirmed using Arabidopsis thaliana plants. Inoculation tests were performed on maize, and morphological parameters were measured. Eighty-seven yeast strains were obtained (50 from blue corn and 37 from red corn). These were associated with three families of Ascomycota (Dothideaceae, Debaryomycetaceae, and Metschnikowiaceae) and five families of Basidiomycota (Sporidiobolaceae, Filobasidiaceae, Piskurozymaceae, Tremellaceae, and Rhynchogastremataceae), and, in turn, distributed in 10 genera (Clavispora, Rhodotorula, Papiliotrema, Candida, Suhomyces, Soliccocozyma, Saitozyma Holtermaniella, Naganishia, and Aeurobasidium). We identified strains that solubilized phosphate and produced siderophores, proteases, pectinases, and cellulases but did not produce amylases. Solicoccozyma sp. RY31, C. lusitaniae Y11, R. glutinis Y23, and Naganishia sp. Y52 produced auxins from L-Trp (11.9-52 µg/mL) and root exudates (1.3-22.5 µg/mL). Furthermore, they stimulated the root development of A. thaliana. Inoculation of auxin-producing yeasts caused a 1.5-fold increase in maize plant height, fresh weight, and root length compared to uninoculated controls. Overall, maize landraces harbor plant growth-promoting yeasts and have the potential for use as agricultural biofertilizers.

5.
Arch Microbiol ; 204(1): 57, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34939131

RESUMO

Mexican maize landraces, produced for local consumption, are adapted to different environmental conditions, and their yield is affected by abiotic and biotic factors, including the use of agrochemicals. The search for sustainable alternatives to agrochemicals includes the study of the culturable microbial communities. In this study, the fungal communities associated with 2 Mexican maize landraces reddish and bluish "conical cobs" were found to be comprised of Ascomycota fungi, represented by 89 strains within 6 orders (Pleosporales, Hypocreales, Onygenales, Capnodiales, Helotiales, and Eurotiales) and 16 genera. Cellulases and metallophores production were the primary enzymatic products and plant growth-promoting activities were detected among the isolates. Penicillium, Didymella, and Fusarium strains had the most active enzymatic and plant growth promoting activities, however, Aspergillus sp. HES2-2.2, Talaromyces sp. RS1-7, and Penicillium sp. HFS3-3 showed antagonistic activity against the four phytopathogenic Fusarium strains Fusarium oxysporum, Fusarium sambucinum, Fusarium fujikuroi and Fusarium incarnatum-equiseti and also a high and diverse production of enzymatic and plant growth promoting activities; here we identified fungal strains as candidates to promote maize growth.


Assuntos
Ascomicetos , Fusarium , Microbiota , Penicillium , Aspergillus , Fungos , Zea mays
6.
BMC Genomics ; 22(1): 240, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823812

RESUMO

BACKGROUND: Spiroplasma is a widely distributed endosymbiont of insects, arthropods, and plants. In insects, Spiroplasma colonizes the gut, hemolymph, and reproductive organs of the host. Previous metagenomic surveys of the domesticated carmine cochineal Dactylopius coccus and the wild cochineal D. opuntiae reported sequences of Spiroplasma associated with these insects. However, there is no analysis of the genomic capabilities and the interaction of this Spiroplasma with Dactylopius. RESULTS: Here we present three Spiroplasma genomes independently recovered from metagenomes of adult males and females of D. coccus, from two different populations, as well as from adult females of D. opuntiae. Single-copy gene analysis showed that these genomes were > 92% complete. Phylogenomic analyses classified these genomes as new members of Spiroplasma ixodetis. Comparative genome analysis indicated that they exhibit fewer genes involved in amino acid and carbon catabolism compared to other spiroplasmas. Moreover, virulence factor-encoding genes (i.e., glpO, spaid and rip2) were found incomplete in these S. ixodetis genomes. We also detected an enrichment of genes encoding the type IV secretion system (T4SS) in S. ixodetis genomes of Dactylopius. A metratranscriptomic analysis of D. coccus showed that some of these T4SS genes (i.e., traG, virB4 and virD4) in addition to the superoxide dismutase sodA of S. ixodetis were overexpressed in the ovaries. CONCLUSION: The symbiont S. ixodetis is a new member of the bacterial community of D. coccus and D. opuntiae. The recovery of incomplete virulence factor-encoding genes in S. ixodetis of Dactylopius suggests that this bacterium is a non-pathogenic symbiont. A high number of genes encoding the T4SS, in the S. ixodetis genomes and the overexpression of these genes in the ovary and hemolymph of the host suggest that S. ixodetis use the T4SS to interact with the Dactylopius cells. Moreover, the transcriptional differences of S. ixodetis among the gut, hemolymph and ovary tissues of D. coccus indicate that this bacterium can respond and adapt to the different conditions (e.g., oxidative stress) present within the host. All this evidence proposes that there is a strong interaction and molecular signaling in the symbiosis between S. ixodetis and the carmine cochineal Dactylopius.


Assuntos
Hemípteros , Spiroplasma , Animais , Carmim , Feminino , Genômica , Masculino , Spiroplasma/genética
7.
Microb Biotechnol ; 14(4): 1282-1299, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33320440

RESUMO

Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.


Assuntos
Endófitos , Herbivoria , Animais , Fungos , Desenvolvimento Vegetal , Plantas
8.
Life (Basel) ; 9(1)2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609847

RESUMO

The scale insect Dactylopius coccus produces high amounts of carminic acid, which has historically been used as a pigment by pre-Hispanic American cultures. Nowadays carmine is found in food, cosmetics, and textiles. Metagenomic approaches revealed that Dactylopius spp. cochineals contain two Wolbachia strains, a betaproteobacterium named Candidatus Dactylopiibacterium carminicum and Spiroplasma, in addition to different fungi. We describe here a transcriptomic analysis indicating that Dactylopiibacterium is metabolically active inside the insect host, and estimate that there are over twice as many Dactylopiibacterium cells in the hemolymph than in the gut, with even fewer in the ovary. Albeit scarce, the transcripts in the ovaries support the presence of Dactylopiibacterium in this tissue and a vertical mode of transmission. In the cochineal, Dactylopiibacterium may catabolize plant polysaccharides, and be active in carbon and nitrogen provisioning through its degradative activity and by fixing nitrogen. In most insects, nitrogen-fixing bacteria are found in the gut, but in this study they are shown to occur in the hemolymph, probably delivering essential amino acids and riboflavin to the host from nitrogen substrates derived from nitrogen fixation.

9.
Can J Microbiol ; 62(4): 307-19, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26936448

RESUMO

Yeasts were quantified and isolated from the rhizospheres of 5 plant species grown at 2 sites of a Mexican region contaminated with arsenic, lead, and other heavy metals. Yeast abundance was about 10(2) CFU/g of soil and 31 isolates were obtained. On the basis of the phylogenetic analysis of 26S rRNA and internal transcribed spacer fragment, 6 species were identified within the following 5 genera: Cryptococcus (80.64%), Rhodotorula (6.45%), Exophiala (6.45%), Trichosporon (3.22%), and Cystobasidium (3.22%). Cryptococcus spp. was the predominant group. Pectinases (51.6%), proteases (51.6%), and xylanases (41.9%) were the enzymes most common, while poor production of siderophores (16.1%) and indole acetic acid (9.67%) was detected. Isolates of Rhodotorula mucilaginosa and Cystobasidium sloffiae could promote plant growth and seed germination in a bioassay using Brassica juncea. Resistance of isolates by arsenic and heavy metals was as follows: As(3+) ≥ 100 mmol/L, As(5+) ≥ 30 mmol/L, Zn(2+) ≥ 2 mmol/L, Pb(2+) ≥ 1.2 mmol/L, and Cu(2+) ≥ 0.5 mmol/L. Strains of Cryptococcus albidus were able to reduce arsenate (As(5+)) into arsenite (As(3+)), but no isolate was capable of oxidizing As(3+). This is the first study on the abundance and identification of rhizosphere yeasts in a heavy-metal- and arsenic-contaminated soil, and of the reduction of arsenate by the species C. albidus.


Assuntos
Arsênio/metabolismo , Cryptococcus/metabolismo , Metais Pesados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Arseniatos/metabolismo , Arsênio/análise , Arsênio/farmacologia , Arsenitos/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/isolamento & purificação , Candida albicans/metabolismo , Cryptococcus/efeitos dos fármacos , Cryptococcus/isolamento & purificação , Germinação , Ácidos Indolacéticos/metabolismo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , Metais Pesados/análise , Metais Pesados/farmacologia , Testes de Sensibilidade Microbiana , Oxirredução , Filogenia , Rizosfera , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA