Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 10(5)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39142300

RESUMO

Objective. This study aims to design and fabricate a 3D printed heterogeneous paediatric head phantom and to customize a thorax phantom for radiotherapy dosimetry.Approach. This study designed, fabricated, and tested 3D printed radiotherapy phantoms that can simulate soft tissue, lung, brain, and bone. Various polymers were considered in designing the phantoms. Polylactic acid+, nylon, and plaster were used in simulating different tissue equivalence. Dimensional accuracy, and CT number were investigated. The phantoms were subjected to a complete radiotherapy clinical workflow. Several treatment plans were delivered in both the head and the thorax phantom from a simple single 6 MV beam, parallel opposed beams, and five-field intensity modulated radiotherapy (IMRT) beams. Dose measurements using an ionization chamber and radiochromic films were compared with the calculated doses of the Varian Eclipse treatment planning system (TPS).Main results. The fabricated heterogeneous phantoms represent paediatric human head and adult thorax based on its radiation attenuation and anatomy. The measured CT number ranges are within -786.23 ± 10.55, 0.98 ± 3.86, 129.51 ± 12.83, and 651.14 ± 47.76 HU for lung, water/brain, soft tissue, and bone, respectively. It has a good radiological imaging visual similarity relative to a real human head and thorax depicting soft tissue, lung, bone, and brain. The accumulated dose readings for both conformal radiotherapy and IMRT match with the TPS calculated dose within ±2% and ±4% for head and thorax phantom, respectively. The mean pass rate for all the plans delivered are above 90% for gamma analysis criterion of 3%/3 mm.Significance and conclusion. The fabricated heterogeneous paediatric head and thorax phantoms are useful in Linac end-to-end radiotherapy quality assurance based on its CT image and measured radiation dose. The manufacturing and dosimetry workflow of this study can be utilized by other institutions for dosimetry and trainings.


Assuntos
Cabeça , Aceleradores de Partículas , Imagens de Fantasmas , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Tórax , Humanos , Tórax/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Criança , Aceleradores de Partículas/instrumentação , Adulto , Garantia da Qualidade dos Cuidados de Saúde , Radiometria/métodos , Tomografia Computadorizada por Raios X
2.
Phys Med Biol ; 69(14)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38914107

RESUMO

Objective.This study aims to design, manufacture, and test 3D printed quality assurance (QA) dosimetry phantoms for synchrotron brain cancer radiation therapy at the Australian synchrotron.Approach.Fabricated 3D printed phantoms from simple slab phantoms, a preclinical rat phantom, and an anthropomorphic head phantom were fabricated and characterized. Attenuation measurements of various polymers, ceramics and metals were acquired using synchrotron monochromatic micro-computed tomography (CT) imaging. Polylactic acid plus, VeroClear, Durable resin, and tricalcium phosphate were used in constructing the phantoms. Furthermore, 3D printed bone equivalent materials were compared relative to ICRU bone and hemihydrate plaster. Homogeneous and heterogeneous rat phantoms were designed and fabricated using tissue-equivalent materials. Geometric accuracy, CT imaging, and consistency were considered. Moreover, synchrotron broad-beam x-rays were delivered using a 3 Tesla superconducting multipole wiggler field for four sets of synchrotron radiation beam qualities. Dose measurements were acquired using a PinPoint ionization chamber and compared relative to a water phantom and a RMI457 Solid Water phantom. Experimental depth doses were compared relative to calculated doses using a Geant4 Monte Carlo simulation.Main results.Polylactic acid (PLA+) shows to have a good match with the attenuation coefficient of ICRU water, while both tricalcium phosphate and hydroxyapatite have good attenuation similarity with ICRU bone cortical. PLA+ material can be used as substitute to RMI457 slabs for reference dosimetry with a maximum difference of 1.84%. Percent depth dose measurement also shows that PLA+ has the best match with water and RMI457 within ±2.2% and ±1.6%, respectively. Overall, PLA+ phantoms match with RMI457 phantoms within ±3%.Significance and conclusion.The fabricated phantoms are excellent tissue equivalent equipment for synchrotron radiation dosimetry QA measurement. Both the rat and the anthropomorphic head phantoms are useful in synchrotron brain cancer radiotherapy dosimetry, experiments, and future clinical translation of synchrotron radiotherapy and imaging.


Assuntos
Neoplasias Encefálicas , Imagens de Fantasmas , Impressão Tridimensional , Radiometria , Síncrotrons , Ratos , Animais , Radiometria/instrumentação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Dosagem Radioterapêutica , Método de Monte Carlo , Garantia da Qualidade dos Cuidados de Saúde , Desenho de Equipamento
3.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38718813

RESUMO

Objective.This study aims to characterize radiological properties of selected additive manufacturing (AM) materials utilizing both material extrusion and vat photopolymerization technologies. Monochromatic synchrotron x-ray images and synchrotron treatment beam dosimetry were acquired at the hutch 3B and 2B of the Australian Synchrotron-Imaging and Medical Beamline.Approach.Eight energies from 30 keV up to 65 keV were used to acquire the attenuation coefficients of the AM materials. Comparison of theoretical, and experimental attenuation data of AM materials and standard solid water for MV linac was performed. Broad-beam dosimetry experiment through attenuated dose measurement and a Geant4 Monte Carlo simulation were done for the studied materials to investigate its attenuation properties specific for a 4 tesla wiggler field with varying synchrotron radiation beam qualities.Main results.Polylactic acid (PLA) plus matches attenuation coefficients of both soft tissue and brain tissue, while acrylonitrile butadiene styrene, Acrylonitrile styrene acrylate, and Draft resin have close equivalence to adipose tissue. Lastly, PLA, co-polyester plus, thermoplastic polyurethane, and White resins are promising substitute materials for breast tissue. For broad-beam experiment and simulation, many of the studied materials were able to simulate RMI457 Solid Water and bolus within ±10% for the three synchrotron beam qualities. These results are useful in fabricating phantoms for synchrotron and other related medical radiation applications such as orthovoltage treatments.Significance and conclusion.These 3D printing materials were studied as potential substitutes for selected tissues such as breast tissue, adipose tissue, soft-tissue, and brain tissue useful in fabricating 3D printed phantoms for synchrotron imaging, therapy, and orthovoltage applications. Fabricating customizable heterogeneous anthropomorphic phantoms (e.g. breast, head, thorax) and pre-clinical animal phantoms (e.g. rodents, canine) for synchrotron imaging and radiotherapy using AM can be done based on the results of this study.


Assuntos
Síncrotrons , Austrália , Método de Monte Carlo , Radioterapia/instrumentação , Radioterapia/métodos , Radiometria/instrumentação , Radiometria/métodos , Humanos
4.
Biomimetics (Basel) ; 8(2)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37366825

RESUMO

The production of anthropomorphic phantoms generated from tissue-equivalent materials is challenging but offers an excellent copy of the typical environment encountered in typical patients. High-quality dosimetry measurements and the correlation of the measured dose with the biological effects elicited by it are a prerequisite in preparation of clinical trials with novel radiotherapy approaches. We designed and produced a partial upper arm phantom from tissue-equivalent materials for use in experimental high-dose-rate radiotherapy. The phantom was compared to original patient data using density values and Hounsfield units obtained from CT scans. Dose simulations were conducted for broad-beam irradiation and microbeam radiotherapy (MRT) and compared to values measured in a synchrotron radiation experiment. Finally, we validated the phantom in a pilot experiment with human primary melanoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA