Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7303, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435799

RESUMO

White adipose tissue browning is a key metabolic process controlled by epigenetic factors that facilitate changes in gene expression leading to altered cell identity. We find that male mice lacking the nucleosome binding proteins HMGN1 and HMGN2 (DKO mice), show decreased body weight and inguinal WAT mass, but elevated food intake, WAT browning and energy expenditure. DKO white preadipocytes show reduced chromatin accessibility and lower FRA2 and JUN binding at Pparγ and Pparα promoters. White preadipocytes and mouse embryonic fibroblasts from DKO mice show enhanced rate of differentiation into brown-like adipocytes. Differentiating DKO adipocytes show reduced H3K27ac levels at white adipocyte-specific enhancers but elevated H3K27ac levels at brown adipocyte-specific enhancers, suggesting a faster rate of change in cell identity, from white to brown-like adipocytes. Thus, HMGN proteins function as epigenetic factors that stabilize white adipocyte cell identity, thereby modulating the rate of white adipose tissue browning and affecting energy metabolism in mice.


Assuntos
Tecido Adiposo Marrom , Nucleossomos , Masculino , Animais , Camundongos , Nucleossomos/metabolismo , Tecido Adiposo Marrom/metabolismo , Proteínas HMGN/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo , Metabolismo Energético/genética
2.
J Biol Chem ; 298(9): 102295, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872015

RESUMO

The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2-transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.


Assuntos
Amelogênese , Regulação da Expressão Gênica , Proteína HMGN2 , Proteínas de Homeodomínio , Fator 1 de Ligação ao Facilitador Linfoide , Fatores de Transcrição , Transcrição Gênica , Amelogênese/genética , Amelogenina/genética , Animais , Cromatina/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
3.
Epigenetics Chromatin ; 15(1): 23, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761366

RESUMO

BACKGROUND: Nucleosomal binding proteins, HMGN, is a family of chromatin architectural proteins that are expressed in all vertebrate nuclei. Although previous studies have discovered that HMGN proteins have important roles in gene regulation and chromatin accessibility, whether and how HMGN proteins affect higher order chromatin status remains unknown. RESULTS: We examined the roles that HMGN1 and HMGN2 proteins play in higher order chromatin structures in three different cell types. We interrogated data generated in situ, using several techniques, including Hi-C, Promoter Capture Hi-C, ChIP-seq, and ChIP-MS. Our results show that HMGN proteins occupy the A compartment in the 3D nucleus space. In particular, HMGN proteins occupy genomic regions involved in cell-type-specific long-range promoter-enhancer interactions. Interestingly, depletion of HMGN proteins in the three different cell types does not cause structural changes in higher order chromatin, i.e., in topologically associated domains (TADs) and in A/B compartment scores. Using ChIP-seq combined with mass spectrometry, we discovered protein partners that are directly associated with or neighbors of HMGNs on nucleosomes. CONCLUSIONS: We determined how HMGN chromatin architectural proteins are positioned within a 3D nucleus space, including the identification of their binding partners in mononucleosomes. Our research indicates that HMGN proteins localize to active chromatin compartments but do not have major effects on 3D higher order chromatin structure and that their binding to chromatin is not dependent on specific protein partners.


Assuntos
Cromatina , Proteínas HMGN , Epigênese Genética , Proteínas HMGN/química , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Nucleossomos , Ligação Proteica
4.
Commun Biol ; 5(1): 159, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197580

RESUMO

Nucleosomes containing acetylated H3K27 are a major epigenetic mark of active chromatin and identify cell-type specific chromatin regulatory regions which serve as binding sites for transcription factors. Here we show that the ubiquitous nucleosome binding proteins HMGN1 and HMGN2 bind preferentially to H3K27ac nucleosomes at cell-type specific chromatin regulatory regions. HMGNs bind directly to the acetylated nucleosome; the H3K27ac residue and linker DNA facilitate the preferential binding of HMGNs to the modified nucleosomes. Loss of HMGNs increases the levels of H3K27me3 and the histone H1 occupancy at enhancers and promoters and alters the interaction of transcription factors with chromatin. These experiments indicate that the H3K27ac epigenetic mark enhances the interaction of architectural protein with chromatin regulatory sites and identify determinants that facilitate the localization of HMGN proteins at regulatory sites to modulate cell-type specific gene expression.


Assuntos
Proteínas HMGN , Nucleossomos , Cromatina/genética , Proteínas HMGN/química , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Nucleossomos/genética , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Clin Invest ; 131(9)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938457

RESUMO

Intestinal farnesoid X receptor (FXR) signaling is involved in the development of obesity, fatty liver disease, and type 2 diabetes. However, the role of intestinal FXR in atherosclerosis and its potential as a target for clinical treatment have not been explored. The serum levels of fibroblast growth factor 19 (FGF19), which is encoded by an FXR target gene, were much higher in patients with hypercholesterolemia than in control subjects and were positively related to circulating ceramide levels, indicating a link between intestinal FXR, ceramide metabolism, and atherosclerosis. Among ApoE-/- mice fed a high-cholesterol diet (HCD), intestinal FXR deficiency (in FxrΔIE ApoE-/- mice) or direct FXR inhibition (via treatment with the FXR antagonist glycoursodeoxycholic acid [GUDCA]) decreased atherosclerosis and reduced the levels of circulating ceramides and cholesterol. Sphingomyelin phosphodiesterase 3 (SMPD3), which is involved in ceramide synthesis in the intestine, was identified as an FXR target gene. SMPD3 overexpression or C16:0 ceramide supplementation eliminated the improvements in atherosclerosis in FxrΔIE ApoE-/- mice. Administration of GUDCA or GW4869, an SMPD3 inhibitor, elicited therapeutic effects on established atherosclerosis in ApoE-/- mice by decreasing circulating ceramide levels. This study identified an intestinal FXR/SMPD3 axis that is a potential target for atherosclerosis therapy.


Assuntos
Aterosclerose , Ceramidas/biossíntese , Mucosa Intestinal/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Ácido Ursodesoxicólico/análogos & derivados , Animais , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Ceramidas/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Esfingomielina Fosfodiesterase/genética , Ácido Ursodesoxicólico/farmacologia
6.
Nat Commun ; 11(1): 1792, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286289

RESUMO

Continuous cancer growth is driven by subsets of self-renewing malignant cells. Targeting of uncontrolled self-renewal through inhibition of stem cell-related signaling pathways has proven challenging. Here, we show that cancer cells can be selectively deprived of self-renewal ability by interfering with their epigenetic state. Re-expression of histone H1.0, a tumor-suppressive factor that inhibits cancer cell self-renewal in many cancer types, can be broadly induced by the clinically well-tolerated compound Quisinostat. Through H1.0, Quisinostat inhibits cancer cell self-renewal and halts tumor maintenance without affecting normal stem cell function. Quisinostat also hinders expansion of cells surviving targeted therapy, independently of the cancer types and the resistance mechanism, and inhibits disease relapse in mouse models of lung cancer. Our results identify H1.0 as a major mediator of Quisinostat's antitumor effect and suggest that sequential administration of targeted therapy and Quisinostat may be a broadly applicable strategy to induce a prolonged response in patients.


Assuntos
Autorrenovação Celular , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Neoplasias/genética , Recidiva
7.
Nat Commun ; 11(1): 1406, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179749

RESUMO

Chromatin organization is a highly orchestrated process that influences gene expression, in part by modulating access of regulatory factors to DNA and nucleosomes. Here, we report that the chromatin accessibility regulator HMGN1, a target of recurrent DNA copy gains in leukemia, controls myeloid differentiation. HMGN1 amplification is associated with increased accessibility, expression, and histone H3K27 acetylation of loci important for hematopoietic stem cells (HSCs) and leukemia, such as HoxA cluster genes. In vivo, HMGN1 overexpression is linked to decreased quiescence and increased HSC activity in bone marrow transplantation. HMGN1 overexpression also cooperates with the AML-ETO9a fusion oncoprotein to impair myeloid differentiation and enhance leukemia stem cell (LSC) activity. Inhibition of histone acetyltransferases CBP/p300 relieves the HMGN1-associated differentiation block. These data nominate factors that modulate chromatin accessibility as regulators of HSCs and LSCs, and suggest that targeting HMGN1 or its downstream effects on histone acetylation could be therapeutically active in AML.


Assuntos
Cromatina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Acetilação , Animais , Diferenciação Celular , Sobrevivência Celular , Feminino , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Células-Tronco Hematopoéticas/citologia , Histonas/genética , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
8.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936777

RESUMO

Chromatin plays a key role in regulating gene expression programs necessary for the orderly progress of development and for preventing changes in cell identity that can lead to disease. The high mobility group N (HMGN) is a family of nucleosome binding proteins that preferentially binds to chromatin regulatory sites including enhancers and promoters. HMGN proteins are ubiquitously expressed in all vertebrate cells potentially affecting chromatin function and epigenetic regulation in multiple cell types. Here, we review studies aimed at elucidating the biological function of HMGN proteins, focusing on their possible role in vertebrate development and the etiology of disease. The data indicate that changes in HMGN levels lead to cell type-specific phenotypes, suggesting that HMGN optimize epigenetic processes necessary for maintaining cell identity and for proper execution of specific cellular functions. This manuscript contains tables that can be used as a comprehensive resource for all the English written manuscripts describing research aimed at elucidating the biological function of the HMGN protein family.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/fisiologia , Animais , Cromatina , Doença , Proteínas HMGN , Proteínas de Grupo de Alta Mobilidade/classificação , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Camundongos , Regiões Promotoras Genéticas
9.
Nucleic Acids Res ; 47(9): 4449-4461, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30838422

RESUMO

HMGN proteins localize to chromatin regulatory sites and modulate the cell-type specific transcription profile; however, the molecular mechanism whereby these ubiquitous nucleosome binding proteins affect gene expression is not fully understood. Here, we show that HMGNs regulate the expression of Rex1, one of the most highly transcribed genes in mouse embryonic stem cells (ESCs), by recruiting the transcription factors NANOG, OCT4 and SOX2 to an ESC-specific super enhancer located in the 5' region of Rex1. HMGNs facilitate the establishment of an epigenetic landscape characteristic of active chromatin and enhancer promoter interactions, as seen by chromatin conformation capture. Loss of HMGNs alters the local epigenetic profile, increases histone H1 occupancy, decreases transcription factors binding and reduces enhancer promoter interactions, thereby downregulating, but not abolishing Rex1 expression. ChIP-seq analyses show high colocalization of HMGNs and of REX1, a zinc finger protein, at promoters and enhancers. Loss of HMGNs preferentially reduces the specific binding of REX1 to these chromatin regulatory sites. Thus, HMGNs affects both the expression and the chromatin binding specificity of REX1. We suggest that HMGNs affect cell-type specific gene expression by modulating the binding specificity of transcription factors to chromatin.


Assuntos
Cromatina/genética , Epigênese Genética , Proteínas HMGN/genética , Fatores de Transcrição/genética , Animais , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Proteínas HMGN/química , Histonas/genética , Camundongos , Células-Tronco Embrionárias Murinas , Proteína Homeobox Nanog/genética , Nucleossomos/genética , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição SOXB1/genética
10.
Nat Commun ; 9(1): 5240, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30532006

RESUMO

The dynamic nature of the chromatin epigenetic landscape plays a key role in the establishment and maintenance of cell identity, yet the factors that affect the dynamics of the epigenome are not fully known. Here we find that the ubiquitous nucleosome binding proteins HMGN1 and HMGN2 preferentially colocalize with epigenetic marks of active chromatin, and with cell-type specific enhancers. Loss of HMGNs enhances the rate of OSKM induced reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs), and the ASCL1 induced conversion of fibroblast into neurons. During transcription factor induced reprogramming to pluripotency, loss of HMGNs accelerates the erasure of the MEF-specific epigenetic landscape and the establishment of an iPSCs-specific chromatin landscape, without affecting the pluripotency potential and the differentiation potential of the reprogrammed cells. Thus, HMGN proteins modulate the plasticity of the chromatin epigenetic landscape thereby stabilizing, rather than determining cell identity.


Assuntos
Membrana Celular/metabolismo , Fibroblastos/metabolismo , Proteína HMGN1/metabolismo , Proteína HMGN2/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Reprogramação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/citologia , Epigênese Genética , Fibroblastos/citologia , Células HEK293 , Proteína HMGN1/genética , Proteína HMGN2/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Knockout , Camundongos Nus , Ligação Proteica
11.
Cell Rep ; 25(7): 1898-1911.e5, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428356

RESUMO

Down syndrome (DS, trisomy 21) is associated with developmental abnormalities and increased leukemia risk. To reconcile chromatin alterations with transcriptome changes, we performed paired exogenous spike-in normalized RNA and chromatin immunoprecipitation sequencing in DS models. Absolute normalization unmasks global amplification of gene expression associated with trisomy 21. Overexpression of the nucleosome binding protein HMGN1 (encoded on chr21q22) recapitulates transcriptional changes seen with triplication of a Down syndrome critical region on distal chromosome 21, and HMGN1 is necessary for B cell phenotypes in DS models. Absolute exogenous-normalized chromatin immunoprecipitation sequencing (ChIP-Rx) also reveals a global increase in histone H3K27 acetylation caused by HMGN1. Transcriptional amplification downstream of HMGN1 is enriched for stage-specific programs of B cells and B cell acute lymphoblastic leukemia, dependent on the developmental cellular context. These data offer a mechanistic explanation for DS transcriptional patterns and suggest that further study of HMGN1 and RNA amplification in diverse DS phenotypes is warranted.


Assuntos
Síndrome de Down/genética , Proteína HMGN1/genética , Transcrição Gênica , Trissomia/genética , Acetilação , Animais , Linfócitos B/metabolismo , Linhagem Celular , Genoma , Proteína HMGN1/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Genéticos , Nucleossomos/metabolismo , Fenótipo , RNA/genética , Transcriptoma/genética , Regulação para Cima/genética
13.
J Clin Invest ; 128(1): 323-340, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29202474

RESUMO

Metabolic reprogramming in breast tumors is linked to increases in putative oncogenic metabolites that may contribute to malignant transformation. We previously showed that accumulation of the oncometabolite, 2-hydroxyglutarate (2HG), in breast tumors was associated with MYC signaling, but not with isocitrate dehydrogenase (IDH) mutations, suggesting a distinct mechanism for increased 2HG in breast cancer. Here, we determined that D-2HG is the predominant enantiomer in human breast tumors and show that the D-2HG-producing mitochondrial enzyme, alcohol dehydrogenase, iron-containing protein 1 (ADHFE1), is a breast cancer oncogene that decreases patient survival. We found that MYC upregulates ADHFE1 through changes in iron metabolism while coexpression of both ADHFE1 and MYC strongly enhanced orthotopic tumor growth in MCF7 cells. Moreover, ADHFE1 promoted metabolic reprogramming with increased formation of D-2HG and reactive oxygen, a reductive glutamine metabolism, and modifications of the epigenetic landscape, leading to cellular dedifferentiation, enhanced mesenchymal transition, and phenocopying alterations that occur with high D-2HG levels in cancer cells with IDH mutations. Together, our data support the hypothesis that ADHFE1 and MYC signaling contribute to D-2HG accumulation in breast tumors and show that D-2HG is an oncogenic metabolite and potential driver of disease progression.


Assuntos
Oxirredutases do Álcool/metabolismo , Neoplasias da Mama/metabolismo , Desdiferenciação Celular , Reprogramação Celular , Proteínas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Oxirredutases do Álcool/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Glutaratos/metabolismo , Humanos , Células MCF-7 , Proteínas Mitocondriais/genética , Proteínas Proto-Oncogênicas c-myc/genética , Espécies Reativas de Oxigênio/metabolismo
14.
Nucleic Acids Res ; 45(17): 9917-9930, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28973435

RESUMO

The structure of the nucleosome, the basic building block of the chromatin fiber, plays a key role in epigenetic regulatory processes that affect DNA-dependent processes in the context of chromatin. Members of the HMGN family of proteins bind specifically to nucleosomes and affect chromatin structure and function, including transcription and DNA repair. To better understand the mechanisms by which HMGN 1 and 2 alter chromatin, we analyzed their effect on the organization of histone tails and linker histone H1 in nucleosomes. We find that HMGNs counteract linker histone (H1)-dependent stabilization of higher order 'tertiary' chromatin structures but do not alter the intrinsic ability of nucleosome arrays to undergo salt-induced compaction and self-association. Surprisingly, HMGNs do not displace H1s from nucleosomes; rather these proteins bind nucleosomes simultaneously with H1s without disturbing specific contacts between the H1 globular domain and nucleosomal DNA. However, HMGNs do alter the nucleosome-dependent condensation of the linker histone C-terminal domain, which is critical for stabilizing higher-order chromatin structures. Moreover, HMGNs affect the interactions of the core histone tail domains with nucleosomal DNA, redirecting the tails to more interior positions within the nucleosome. Our studies provide new insights into the molecular mechanisms whereby HMGNs affect chromatin structure.


Assuntos
DNA/química , Proteína HMGN1/química , Proteína HMGN2/química , Histonas/química , Nucleossomos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , DNA/genética , DNA/metabolismo , Expressão Gênica , Proteína HMGN1/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/genética , Proteína HMGN2/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Conformação de Ácido Nucleico , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
15.
Carcinogenesis ; 38(4): 391-401, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186538

RESUMO

Thyroid cancer originates from genetic and epigenetic changes that alter gene expression and cellular signaling pathways. Here, we report that altered expression of the nucleosome-binding protein HMGN4 potentiates thyroid tumorigenesis. Bioinformatics analyses reveal increased HMGN4 expression in thyroid cancer. We find that upregulation of HMGN4 expression in mouse and human cells, and in the thyroid of transgenic mice, alters the cellular transcription profile, downregulates the expression of the tumor suppressors Atm, Atrx and Brca2, and elevates the levels of the DNA damage marker γH2AX. Mouse and human cells overexpressing HMGN4 show increased tumorigenicity as measured by colony formation, by tumor generation in nude mice, and by the formation of preneoplastic lesions in the thyroid of transgenic mice. Our study identifies a novel epigenetic factor that potentiates thyroid oncogenesis and raises the possibility that HMGN4 may serve as an additional diagnostic marker, or therapeutic target in certain thyroid cancers.


Assuntos
Carcinogênese/genética , Transformação Celular Neoplásica/genética , Expressão Gênica/genética , Proteínas HMGN/genética , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Animais , Biomarcadores Tumorais/genética , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Regulação para Baixo/genética , Epigênese Genética/genética , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transdução de Sinais/genética , Transcrição Gênica/genética , Regulação para Cima/genética
16.
Nucleic Acids Res ; 45(6): 3031-3045, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27923998

RESUMO

An interplay between the nucleosome binding proteins H1 and HMGN is known to affect chromatin dynamics, but the biological significance of this interplay is still not clear. We find that during embryonic stem cell differentiation loss of HMGNs leads to down regulation of genes involved in neural differentiation, and that the transcription factor OLIG2 is a central node in the affected pathway. Loss of HMGNs affects the expression of OLIG2 as well as that of OLIG1, two transcription factors that are crucial for oligodendrocyte lineage specification and nerve myelination. Loss of HMGNs increases the chromatin binding of histone H1, thereby recruiting the histone methyltransferase EZH2 and elevating H3K27me3 levels, thus conferring a repressive epigenetic signature at Olig1&2 sites. Embryonic stem cells lacking HMGNs show reduced ability to differentiate towards the oligodendrocyte lineage, and mice lacking HMGNs show reduced oligodendrocyte count and decreased spinal cord myelination, and display related neurological phenotypes. Thus, the presence of HMGN proteins is required for proper expression of neural differentiation genes during embryonic stem cell differentiation. Specifically, we demonstrate that the dynamic interplay between HMGNs and H1 in chromatin epigenetically regulates the expression of OLIG1&2, thereby affecting oligodendrocyte development and myelination, and mouse behavior.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Epigênese Genética , Proteínas HMGN/fisiologia , Histonas/metabolismo , Proteínas do Tecido Nervoso/genética , Oligodendroglia/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Proteína HMGN1/genética , Proteína HMGN1/fisiologia , Proteína HMGN2/genética , Proteína HMGN2/fisiologia , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos
17.
Science ; 352(6286): aad6933, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27151873

RESUMO

The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.


Assuntos
Núcleo Celular , Genoma/fisiologia , Animais , Movimento Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , DNA/química , DNA/ultraestrutura , Dano ao DNA , Genoma/genética , Humanos , Mecanotransdução Celular , Conformação de Ácido Nucleico , Transdução de Sinais , Estresse Mecânico
18.
Nucleic Acids Res ; 44(15): 7144-58, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27112571

RESUMO

The activation of naïve B lymphocyte involves rapid and major changes in chromatin organization and gene expression; however, the complete repertoire of nuclear factors affecting these genomic changes is not known. We report that HMGN proteins, which bind to nucleosomes and affect chromatin structure and function, co-localize with, and maintain the intensity of DNase I hypersensitive sites genome wide, in resting but not in activated B cells. Transcription analyses of resting and activated B cells from wild-type and Hmgn(-/-) mice, show that loss of HMGNs dampens the magnitude of the transcriptional response and alters the pattern of gene expression during the course of B-cell activation; defense response genes are most affected at the onset of activation. Our study provides insights into the biological function of the ubiquitous HMGN chromatin binding proteins and into epigenetic processes that affect the fidelity of the transcriptional response during the activation of B cell lymphocytes.


Assuntos
Linfócitos B/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas HMGN/metabolismo , Ativação Linfocitária/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Desoxirribonuclease I/metabolismo , Epigênese Genética , Proteínas HMGN/deficiência , Proteínas HMGN/genética , Proteína HMGN1/metabolismo , Proteína HMGN2/metabolismo , Masculino , Camundongos , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Baço/citologia , Baço/imunologia
19.
Biochim Biophys Acta ; 1859(3): 462-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26455954

RESUMO

The dynamic interaction of nucleosome binding proteins with their chromatin targets is an important element in regulating the structure and function of chromatin. Histone H1 variants and High Mobility Group (HMG) proteins are ubiquitously expressed in all vertebrate cells, bind dynamically to chromatin, and are known to affect chromatin condensation and the ability of regulatory factors to access their genomic binding sites. Here, we review the studies that focus on the interactions between H1 and HMGs and highlight the functional consequences of the interplay between these architectural chromatin binding proteins. H1 and HMG proteins are mobile molecules that bind to nucleosomes as members of a dynamic protein network. All HMGs compete with H1 for chromatin binding sites, in a dose dependent fashion, but each HMG family has specific effects on the interaction of H1 with chromatin. The interplay between H1 and HMGs affects chromatin organization and plays a role in epigenetic regulation.


Assuntos
Cromatina/química , Proteínas de Grupo de Alta Mobilidade/fisiologia , Histonas/fisiologia , Animais , Proteínas de Transporte/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA