Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 31(5): 498-510, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36535834

RESUMO

As part of their survival strategy under harsh environmental conditions, endospore-forming bacteria can trigger a sporulation developmental program. Although the regulatory cascades that precisely control the transformation of vegetative bacteria into mother cells and resilient spores have been described in detail, less is known about how bacteriophages that prey on endospore-formers exploit sporulation. Herein, we argue that phages infecting these bacteria have evolved several specific molecular mechanisms, not yet known in other bacteria, that manifest from the phage-driven alliance to negative effects on the host. We anticipate that the relationships between phages and endospore-formers outlined here will inspire studies on phage ecology and evolution, and could facilitate important advances in the development of phage therapies against pathogenic spore-formers.


Assuntos
Bacteriófagos , Esporos Bacterianos , Bactérias , Ecologia
2.
Plant Physiol ; 191(3): 1934-1952, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36517238

RESUMO

TGA (TGACG-binding) transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigated the role of StTGA2.1, a potato (Solanum tuberosum) TGA lacking the full bZIP, which we named a mini-TGA. Such truncated proteins have been widely assigned as loss-of-function mutants. We, however, confirmed that StTGA2.1 overexpression compensates for SA-deficiency, indicating a distinct mechanism of action compared with model plant species. To understand the underlying mechanisms, we showed that StTGA2.1 can physically interact with StTGA2.2 and StTGA2.3, while its interaction with DNA was not detected. We investigated the changes in transcriptional regulation due to StTGA2.1 overexpression, identifying direct and indirect target genes. Using in planta transactivation assays, we confirmed that StTGA2.1 interacts with StTGA2.3 to activate StPRX07, a member of class III peroxidases (StPRX), which are known to play role in immune response. Finally, via structural modeling and molecular dynamics simulations, we hypothesized that the compact molecular architecture of StTGA2.1 distorts DNA conformation upon heterodimer binding to enable transcriptional activation. This study demonstrates how protein truncation can lead to distinct functions and that such events should be studied carefully in other protein families.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Enzyme Inhib Med Chem ; 38(1): 387-397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36446617

RESUMO

Bacterial resistance is an increasing threat to healthcare systems, highlighting the need for discovering new antibacterial agents. An established technique, fragment-based drug discovery, was used to target a bacterial enzyme Ddl involved in the biosynthesis of peptidoglycan. We assembled general and focused fragment libraries that were screened in a biochemical inhibition assay. Screening revealed a new fragment-hit inhibitor of DdlB with a Ki value of 20.7 ± 4.5 µM. Binding to the enzyme was confirmed by an orthogonal biophysical method, surface plasmon resonance, making the hit a promising starting point for fragment development.


Assuntos
Antibacterianos , Peptidoglicano , Antibacterianos/farmacologia , Parede Celular , Bioensaio , Ligases
4.
Sci Total Environ ; 856(Pt 1): 158786, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116646

RESUMO

The formation of giant hailstones is a rare weather event that has devastating consequences in inhabited areas. This hazard has been occurring more frequently and with greater size of hailstones in recent years, and thus needs to be better understood. While the generally accepted mechanism is thought to be a process similar to the formation of smaller hailstones but with exceptional duration and stronger updrafts, recent evidence suggests that biotic and abiotic factors also influence the growth of these unusually large ice chunks. In this study, we improved these findings by determining the distribution of a wide variety of these factors throughout the hail volume and expanding the search to include new particles that are common in the environment and are of anthropogenic origin. We melted the concentric layers of several giant hailstones that fell to the ground over a small region in Slovenia in 2019. The samples, up to 13 cm in diameter, were analyzed for biotic and abiotic constituents that could have influenced their formation. Using 16S rRNA-based metagenomics approaches, we identified a highly diverse bacterial community, and by using scanning electron microscopy and Raman spectroscopy, we found natural and synthetic fibers concentrated in the cores of the giant hailstones. For the first time, we were able to detect the existence of microplastic fibers in giant hailstones and determine the changes in the distribution of sand within the volume of the samples. Our results suggest that changes in the composition of hail layers and their great diversity are important factors that should be considered in research. It also appears that anthropogenic microfiber pollutants were a significant factor in the formation of the giant hailstones analyzed in this study.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos/química , RNA Ribossômico 16S , Bactérias , Poluentes Químicos da Água/análise , Monitoramento Ambiental
5.
Commun Biol ; 5(1): 1286, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434275

RESUMO

Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.


Assuntos
Bacillus thuringiensis , Bacteriófagos , Animais , Humanos , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacteriófagos/genética , Sorogrupo , Lisogenia/genética , DNA/metabolismo
6.
Nucleic Acids Res ; 50(19): e113, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36029110

RESUMO

Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification. To this end, we engineered the LacI transcription repressor to be routed, together with target DNA, into the lumen of a Strep-tagged Pdu shell. Sequencing of extracted DNA from the affinity-isolated MCPs shows that our strategy results in packaging of a DNA segment carrying multiple LacI binding sites, but not the flanking regions. Furthermore, we used LacI to drive the encapsulation of a DNA segment containing operators for LacI and for a second transcription factor.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/genética , Propilenoglicol/química , Propilenoglicol/metabolismo , DNA/genética
7.
J Bacteriol ; 204(3): e0060121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35191762

RESUMO

Acinetobacter baumannii poses a great threat in health care settings worldwide, with clinical isolates displaying an ever-evolving multidrug resistance. In strains of A. baumannii, expression of multiple error-prone polymerase genes are corepressed by UmuDAb, a member of the LexA superfamily, and a small protein, DdrR. It is currently unknown how DdrR establishes this repression. Here, we used surface plasmon resonance spectrometry to show that DdrR formed a stable complex with the UmuDAb regulator. Our results indicated that the carboxy-terminal dimerization domain of UmuDAb formed the interaction interface with DdrR. Our in vitro data also showed that RecA-mediated inactivation of UmuDAb was inhibited when this transcription factor was bound to its target DNA. In addition, we showed that DdrR interacted with a putative prophage repressor, homologous to LexA superfamily proteins. These data suggested that DdrR modulated DNA damage response and prophage induction in A. baumannii by binding to LexA-like regulators. IMPORTANCE We previously identified a 50-residue bacteriophage protein, gp7, which interacts with and modulates the function of the LexA transcription factor from Bacillus thuringiensis. Here, we present data that indicates that the small DdrR protein from A. baumannii likely coordinates the SOS response and prophage processes by also interacting with LexA superfamily members. We suggest that similar small proteins that interact with LexA-like proteins to coordinate DNA repair and bacteriophage functions may be common to many bacteria that mount the SOS response.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mutagênicos , Fatores de Transcrição/metabolismo
8.
Food Chem ; 373(Pt B): 131594, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34838409

RESUMO

The abundance of polyphenols in edible plants makes them an important component of human nutrition. Considering the ongoing COVID-19 pandemic, a number of studies have investigated polyphenols as bioactive constituents. We applied in-silico molecular docking as well as molecular dynamics supported by in-vitro assays to determine the inhibitory potential of various plant polyphenols against an important SARS-CoV-2 therapeutic target, the protease 3CLpro. Of the polyphenols in initial in-vitro screening, quercetin, ellagic acid, curcumin, epigallocatechin gallate and resveratrol showed IC50 values of 11.8 µM to 23.4 µM. In-silico molecular dynamics simulations indicated stable interactions with the 3CLpro active site over 100 ns production runs. Moreover, surface plasmon resonance spectroscopy was used to measure the binding of polyphenols to 3CLpro in real time. Therefore, we provide evidence for inhibition of SARS-CoV-2 3CLpro by natural plant polyphenols, and suggest further research into the development of these novel 3CLpro inhibitors or biochemical probes.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Polifenóis , SARS-CoV-2/efeitos dos fármacos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Polifenóis/farmacologia
9.
J Virol Methods ; 298: 114283, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534610

RESUMO

The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is essential for virus replication, therefore it is a promising drug target. Here we present a surface plasmon resonance approach to study the interaction of RdRp with drugs in real time. We monitored the effect of favipiravir, ribavirin, sofosbuvir triphosphate PSI-7409 and suramin on RdRp binding to RNA immobilized on the chip. Suramin precluded interaction of RdRp with RNA and even displaced RdRp from RNA.


Assuntos
COVID-19 , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Interações Medicamentosas , Humanos , RNA Viral , SARS-CoV-2 , Suramina/farmacologia , Ressonância de Plasmônio de Superfície
10.
Sci Rep ; 11(1): 6572, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753805

RESUMO

Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.


Assuntos
Proteínas de Bactérias/química , Etanolaminas/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa , Animais , Proteínas de Bactérias/metabolismo , Etanolaminas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Células Sf9 , Relação Estrutura-Atividade
11.
DNA Repair (Amst) ; 79: 50-54, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31129429

RESUMO

Cells employ specific and nonspecific mechanisms to protect their genome integrity against exogenous and endogenous factors. The clbS gene is part of the polyketide synthase machinery (pks genomic island) encoding colibactin, a genotoxin implicated in promoting colorectal cancer. The pks is found among the Enterobacteriaceae, in particular Escherichia coli strains of the B2 phylogenetic group. Several resistance mechanisms protect toxin producers against toxicity of their products. ClbS, a cyclopropane hydrolase, was shown to confer colibactin resistance by opening its electrophilic cyclopropane ring. Here we report that ClbS sustained viability and enabled growth also of E. coli expressing another genotoxin, the Usp nuclease. The recA::gfp reporter system showed that ClbS protects against Usp induced DNA damage. To elucidate the mechanism of ClbS mediated protection, we studied the DNA binding ability of the ClbS protein. We show that ClbS directly interacts with single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), whereas ssDNA seems to be the preferred substrate. Thus, the ClbS DNA-binding characteristics may serve bacteria to protect their genomes against DNA degradation.


Assuntos
Dano ao DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Ligação Proteica
12.
Structure ; 27(7): 1094-1102.e4, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31056420

RESUMO

Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7. Here we report the crystallographic structure of phage-borne gp7 at 1.7-Å resolution, and characterize the 4:2 stoichiometry and potential interaction with LexA using surface plasmon resonance, static light scattering, and small-angle X-ray scattering. These data suggest that gp7 stabilizes LexA binding to operator DNA via coordination of the N- and C-terminal domains of LexA. Furthermore, we have found that gp7 can interact with LexA from Staphylococcus aureus, a significant human pathogen. Our results provide structural evidence as to how phage factors can directly associate with LexA to modulate the SOS response.


Assuntos
Fagos Bacilares/genética , Bacillus thuringiensis/genética , Proteínas de Bactérias/química , DNA Bacteriano/química , Serina Endopeptidases/química , Staphylococcus aureus/genética , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Fagos Bacilares/metabolismo , Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Lisogenia/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resposta SOS em Genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus/virologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
13.
J Mol Biol ; 431(20): 4067-4077, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30998934

RESUMO

Transcription in most bacteria is tightly regulated in order to facilitate bacterial adaptation to different environments, and transcription factors play a key role in this. Here we give a brief overview of the essential features of bacterial transcription factors and how they affect transcript initiation at target promoters. We focus on complex promoters that are regulated by combinations of activators and repressors, combinations of repressors only, or combinations of activators. At some promoters, transcript initiation is regulated by nucleoid-associated proteins, which often work together with transcription factors. We argue that the distinction between nucleoid-associated proteins and transcription factors is blurred and that they likely share common origins.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
14.
Nucleic Acids Res ; 46(18): 9432-9443, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053203

RESUMO

The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.


Assuntos
Proteínas de Bactérias/genética , Bacteriófagos/genética , Lisogenia/genética , Serina Endopeptidases/genética , Transcrição Gênica/genética , Proteínas Virais/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Sequência de Bases , Citotoxinas/genética , Citotoxinas/metabolismo , Regulação Viral da Expressão Gênica , Regiões Promotoras Genéticas , Homologia de Sequência , Serina Endopeptidases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Semin Cell Dev Biol ; 72: 142-151, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28506897

RESUMO

Proteins of the aegerolysin family span many kingdoms of life. They are relatively widely distributed in bacteria and fungi, but also appear in plants, protozoa and insects. Despite being produced in abundance in cells at specific developmental stages and present in secretomes, only a few aegerolysins have been studied in detail. In particular, their organism-specific physiological roles are intriguing. Here, we review published findings to date on the distribution, molecular interactions and biological activities of this family of structurally and functionally versatile proteins, the aegerolysins.


Assuntos
Agaricales/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hemolisinas/metabolismo , Lipídeos , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Hemolisinas/classificação , Proteínas Hemolisinas/genética , Modelos Moleculares , Filogenia , Domínios Proteicos , Homologia de Sequência de Aminoácidos
16.
PLoS One ; 11(7): e0159231, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27414641

RESUMO

The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116-188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116-188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.


Assuntos
Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/patogenicidade , Toxinas Bacterianas/genética , Adulto , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Sequência de Aminoácidos , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Periodontite Crônica/etiologia , Periodontite Crônica/microbiologia , Sequência Conservada , Genes Bacterianos , Variação Genética , Células HeLa , Histidina/química , Humanos , Células Jurkat , Modelos Moleculares , Óperon , Conformação Proteica , Deleção de Sequência , Virulência/genética
17.
Trends Microbiol ; 24(5): 391-401, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970840

RESUMO

The SOS response is an essential process for responding to DNA damage in bacteria. The expression of SOS genes is under the control of LexA, a global transcription factor that undergoes self-cleavage during stress to allow the expression of DNA repair functions and delay cell division until the damage is rectified. LexA also regulates genes that are not part of this cell rescue program, and the induction of bacteriophages, the movement of pathogenicity islands, and the expression of virulence factors and bacteriocins are all controlled by this important transcription factor. Recently it has emerged that when regulating the expression of genes from mobile genetic elements (MGEs), LexA often does so in concert with a corepressor. This accessory regulator can either be a host-encoded global transcription factor, which responds to various metabolic changes, or a factor that is encoded for by the MGE itself. Thus, the coupling of LexA-mediated regulation to a secondary transcription factor not only detaches LexA from its primary SOS role, but also fine-tunes gene expression from the MGE, enabling it to respond to multiple stresses. Here we discuss the mechanisms of such coordinated regulation and its implications for cells carrying such MGEs.


Assuntos
Proteínas de Bactérias/genética , Sequências Repetitivas Dispersas , Serina Endopeptidases/genética , Bacteriófagos/genética , Dano ao DNA , Regulon , Resposta SOS em Genética , Transcrição Gênica
18.
Antonie Van Leeuwenhoek ; 109(4): 523-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821377

RESUMO

In a genetically uniform bacterial population a small subset of antibiotic-susceptible cells enter an antibiotic tolerant state and are hence referred to as persisters. These have been proposed to be rare phenotypic variants with several stochastically activated independent parallel processes. Here we show an overlooked phenomenon, bacterial tolerance of extraordinary high levels of ampicillin due to encasement of viable cells by an antibiotic induced network of cell debris. This matrix shields the entrapped cells from contact with the bacteriolytic ß-lactam antibiotic ampicillin and may be an underlying cause of notable variations in the level of ampicillin tolerant persisters as well as of considerable medical significance. Disruption of the matrix leads to the rapid elimination of hidden survivors, revealing their metabolically active state.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bacteriólise/efeitos dos fármacos , Ampicilina/farmacologia , Bactérias/crescimento & desenvolvimento , Tolerância a Medicamentos , Escherichia coli/efeitos dos fármacos , Microscopia de Fluorescência
19.
PLoS One ; 10(12): e0144763, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682547

RESUMO

The LexA regulated SOS network is a bacterial response to DNA damage of metabolic or environmental origin. In Clostridium difficile, a nosocomial pathogen causing a range of intestinal diseases, the in-silico deduced LexA network included the core SOS genes involved in the DNA repair and genes involved in various other biological functions that vary among different ribotypes. Here we describe the construction and characterization of a lexA ClosTron mutant in C. difficile R20291 strain. The mutation of lexA caused inhibition of cell division resulting in a filamentous phenotype. The lexA mutant also showed decreased sporulation, a reduction in swimming motility, greater sensitivity to metronidazole, and increased biofilm formation. Changes in the regulation of toxin A, but not toxin B, were observed in the lexA mutant in the presence of sub-inhibitory concentrations of levofloxacin. C. difficile LexA is, therefore, not only a regulator of DNA damage but also controls many biological functions associated with virulence.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Clostridioides difficile/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Antibacterianos/farmacologia , Toxinas Bacterianas/metabolismo , Biofilmes/efeitos dos fármacos , Divisão Celular , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/genética , Enterotoxinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Levofloxacino/farmacologia , Mutação , Resposta SOS em Genética , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
20.
Toxicon ; 108: 32-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26435341

RESUMO

The heteronemertine Parborlasia corrugatus contains a cytolytic protein, parborlysin, which after extensive purification was found by Edman sequencing to be a mixture of several homologues. To investigate this microheterogeneity and enable the analysis of single toxins, we have obtained seven parborlysin isoform genes from P. corrugatus collected in Antarctica. Total RNA was isolated from the homogenized head region and parborlysin genes were identified from a cDNA library using degenerate primers. The translated sequences reveal that the isoforms are ∼ 10 kDa basic (pI ∼ 10) proteins of which all but one harbour six cysteine residues. We generated a model of the three dimensional structure of parborlysins, which suggests that they are composed of five alpha-helical segments that include large, exposed hydrophobic surfaces. Finally, we constructed plasmids and inserted them into Escherichia coli to obtain overexpressed amino- or carboxy-terminal polyhistidine-tagged parborlysin isoforms fused to the third domain of the E. coli periplasmic-protein TolA to facilitate toxin isolation. One of the isoforms adversely affected growth in the E. coli expressing it. Although we succeeded in isolating one of the recombinant parborlysin constructs, it lacked haemolytic activity.


Assuntos
Invertebrados/genética , Toxinas Marinhas/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Escherichia coli/genética , Invertebrados/metabolismo , Toxinas Marinhas/genética , Toxinas Marinhas/toxicidade , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA