Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 704-712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919166

RESUMO

Due to the recent interest in ultrawide bandgap ß-Ga2O3 thin films and nanostructures for various electronics and UV device applications, it is important to understand the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual ß-Ga2O3 NWs using two distinct techniques - in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for finely controllable ß-Ga2O3 NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices.

2.
Beilstein J Nanotechnol ; 15: 435-446, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711582

RESUMO

Metallic nanowires (NWs) are sensitive to heat treatment and can split into shorter fragments within minutes at temperatures far below the melting point. This process can hinder the functioning of NW-based devices that are subject to relatively mild temperatures. Commonly, heat-induced fragmentation of NWs is attributed to the interplay between heat-enhanced diffusion and Rayleigh instability. In this work, we demonstrated that contact with the substrate plays an important role in the fragmentation process and can strongly affect the outcome of the heat treatment. We deposited silver NWs onto specially patterned silicon wafers so that some NWs were partially suspended over the holes in the substrate. Then, we performed a series of heat-treatment experiments and found that adhered and suspended parts of NWs behave differently under the heat treatment. Moreover, depending on the heat-treatment process, fragmentation in either adhered or suspended parts can dominate. Experiments were supported by finite element method and molecular dynamics simulations.

3.
Small ; 20(1): e2304614, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670206

RESUMO

Nanowires (NWs) are among the most studied nanostructures as they have numerous promising applications thanks to their various unique properties. Furthermore, the properties of NWs can be tailored during synthesis by introducing structural defects such as nano-twins, periodic polytypes, and kinks, i.e., abrupt changes in their axial direction. Here, this work reports for the first time the postsynthesis formation of such defects, achieved by exploiting a peculiar plasticity that may occur in nanosized covalent materials. Specifically, in this work the authors found that single-crystal CuO NWs can form double kinks when subjected to external mechanical loading. Both the microscopy and atomistic modeling suggest that deformation-induced twinning along the ( 1 ¯ 10 ) $( {\bar{1}10} )$ plane is the mechanism behind this effect. In a single case the authors are able to unkink a NW back to its initial straight profile, indicating the possibility of reversible plasticity in CuO NWs, which is supported by the atomistic simulations. The phenomenon reported here provides novel insights into the mechanisms of plastic deformation in covalent NWs and offers potential avenues for developing techniques to customize the shape of NWs postsynthesis and introduce new functionalities.

4.
Sci Rep ; 13(1): 8522, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236981

RESUMO

Recently gallium oxide ([Formula: see text]) has become one of the most actively studied materials due to its competitive electronic properties such as wide bandgap, high breakdown field, simple control of carrier concentration, and high thermal stability. These properties make gallium oxide a promising candidate for potential applications in high-power electronic devices. [Formula: see text]-[Formula: see text] crystals are commonly grown by the Czochralski method in an iridium (Ir) crucible. For this reason, Ir is often present in [Formula: see text] crystals as an unintentional dopant. In this work the impact of Ir incorporation defects on potential p-type conductivity in [Formula: see text]-[Formula: see text] is studied by means of density functional theory. The metastable [Formula: see text]-[Formula: see text] phase was investigated as the model object to understand the processes caused by iridium doping in gallium oxide-based systems. Obtained results allow us to understand better the influence of Ir on [Formula: see text] electronic structure, as well as provide interpretation for optical transitions reported in recent experiments.

5.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499857

RESUMO

ß-Ga2O3 thin films grown on widely available c-plane sapphire substrates typically exhibit structural defects due to significant lattice and thermal expansion mismatch, which hinder the use of such films in electronic devices. In this work, we studied the impact of a nucleation layer on MOCVD-grown ß-Ga2O3 thin film structure and morphology on a c-plane sapphire substrate. The structure and morphology of the films were investigated by X-ray diffraction, atomic force microscopy, transmission and scanning electron microscopy, while the composition was confirmed by X-ray photoelectron spectroscopy and micro-Raman spectroscopy. It was observed that the use of a nucleation layer significantly increases the grain size in the films in comparison to the films without, particularly in the samples in which H2O was used alongside O2 as the oxygen source for the nucleation layer growth. Our study demonstrates that a nucleation layer can play a critical role in obtaining high quality ß-Ga2O3 thin films on c-plane sapphire.

6.
Sensors (Basel) ; 22(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591098

RESUMO

Field-effect transistor-based biosensors (bio-FETs) are promising candidates for the rapid high-sensitivity and high-selectivity sensing of various analytes in healthcare, clinical diagnostics, and the food industry. However, bio-FETs still have several unresolved problems that hinder their technological transfer, such as electrical stability. Therefore, it is important to develop reliable, efficient devices and establish facile electrochemical characterization methods. In this work, we have fabricated a flexible biosensor based on an Al:ZnO thin-film transistor (TFT) gated through an aqueous electrolyte on a polyimide substrate. In addition, we demonstrated techniques for establishing the operating range of such devices. The Al:ZnO-based devices with a channel length/width ratio of 12.35 and a channel thickness of 50 nm were produced at room temperature via magnetron sputtering. These Al:ZnO-based devices exhibited high field-effect mobility (µ = 6.85 cm2/Vs) and threshold voltage (Vth = 654 mV), thus showing promise for application on temperature-sensitive substrates. X-ray photoelectron spectroscopy was used to verify the chemical composition of the deposited films, while the morphological aspects of the films were assessed using scanning electron and atomic force microscopies. The gate-channel electric capacitance of 40 nF/cm2 was determined using electrochemical impedance spectroscopy, while the electrochemical window of the gate-channel system was determined as 1.8 V (from -0.6 V to +1.2 V) using cyclic voltammetry. A deionized water solution of 10 mer (CCC AAG GTC C) DNA aptamer (molar weight -2972.9 g/mol) in a concentration ranging from 1-1000 pM/µL was used as an analyte. An increase in aptamer concentration caused a proportional decrease in the TFT channel conductivity. The techniques demonstrated in this work can be applied to optimize the operating parameters of various semiconductor materials in order to create a universal detection platform for biosensing applications, such as multi-element FET sensor arrays based on various composition nanostructured films, which use advanced neural network signal processing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Óxido de Zinco , Técnicas Biossensoriais/métodos , Transistores Eletrônicos , Água , Óxido de Zinco/química
7.
ACS Omega ; 7(2): 1827-1837, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071875

RESUMO

Tungsten trioxide (WO3) is a well-known electrochromic material with a wide band gap, while rhenium trioxide (ReO3) is a "covalent metal" with an electrical conductivity comparable to that of pure metals. Since both WO3 and ReO3 oxides have perovskite-type structures, the formation of their solid solutions (ReO3-WO3 or Re x W1-x O3) can be expected, which may be of significant academic and industrial interest. In this study, layered WO3/ReO3, ReO3/WO3, and mixed ReO3-WO3 thin films were produced by reactive DC magnetron sputtering and subsequent annealing in air at 450 °C. The structure and properties of the films were characterized by X-ray diffraction, optical spectroscopy, Hall conductivity measurements, conductive atomic force microscopy, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoemission spectroscopy. First-principles density functional theory calculations were performed for selected compositions of Re x W1-x O3 solid solutions to model their crystallographic structure and electronic properties. The calculations predict metallic conductivity and tetragonal distortion of solid solutions in agreement with the experimental results. In contrast to previously reported methods, our approach allows us to produce the WO3-ReO3 alloy with a high Re content (>50%) at moderate temperatures and without the use of high pressures.

8.
ACS Appl Mater Interfaces ; 10(16): 13869-13876, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29619827

RESUMO

The surface plays an exceptionally important role in nanoscale materials, exerting a strong influence on their properties. Consequently, even a very thin coating can greatly improve the optoelectronic properties of nanostructures by modifying the light absorption and spatial distribution of charge carriers. To use these advantages, 1D/1D heterostructures of ZnO/WS2 core/shell nanowires with a-few-layers-thick WS2 shell were fabricated. These heterostructures were thoroughly characterized by scanning and transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Then, a single-nanowire photoresistive device was assembled by mechanically positioning ZnO/WS2 core/shell nanowires onto gold electrodes inside a scanning electron microscope. The results show that a few layers of WS2 significantly enhance the photosensitivity in the short wavelength range and drastically (almost 2 orders of magnitude) improve the photoresponse time of pure ZnO nanowires. The fast response time of ZnO/WS2 core/shell nanowire was explained by electrons and holes sinking from ZnO nanowire into WS2 shell, which serves as a charge carrier channel in the ZnO/WS2 heterostructure. First-principles calculations suggest that the interface layer i-WS2, bridging ZnO nanowire surface and WS2 shell, might play a role of energy barrier, preventing the backward diffusion of charge carriers into ZnO nanowire.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA